精英家教网 > 高中数学 > 题目详情
2.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数);在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=2sinθ;
(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;
(2)若射线l:y=kx(x≥0)与曲线C1,C2的交点分别为A,B(A,B异于原点),当斜率$k∈[1,\sqrt{3})$时,求|OA|•|OB|的取值范围.

分析 (1)先将C1的参数方程化为普通方程,再华为极坐标方程,将C2的极坐标方程两边同乘ρ,根据极坐标与直角坐标的对应关系得出C2的直角坐标方程;
(2)求出l的参数方程,分别代入C1,C2的普通方程,根据参数的几何意义得出|OA|,|OB|,得到|OA|•|OB|关于k的函数,根据k的范围得出答案.

解答 解:(1)曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数),普通方程为(x-1)2+y2=1,即x2+y2=2x,
极坐标方程为C1:ρ=2cosθ,
曲线C2的极坐标方程为ρcos2θ=2sinθ,即ρ2cos2θ=2ρsinθ,
∴曲线C2的直角坐标方程${C_2}:{x^2}=2y$,
(2)设射线l的倾斜角为α,
则射线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,$\frac{π}{4}≤α<\frac{π}{3}$).
把射线l的参数方程代入曲线C1的普通方程得:t2-2tcosα=0,
解得t1=0,t2=2cosα.
∴|OA|=|t2|=2cosα.
把射线l的参数方程代入曲线C2的普通方程得:cos2αt2=2tsinα,
解得t1=0,t2=$\frac{2sinα}{co{s}^{2}α}$.
∴|OB|=|t2|=$\frac{2sinα}{co{s}^{2}α}$.
∴|OA|•|OB|=2cosα•$\frac{2sinα}{co{s}^{2}α}$=4tanα=4k.
∵$k∈[1,\sqrt{3})$,4k∈$[4,4\sqrt{3})$,
∴|OA|•|OB|的取值范围是$[4,4\sqrt{3})$.

点评 本题考查了参数方程,极坐标方程与普通方程的转化,参数的几何意义的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知R上的偶函数f(x)在[0,+∞)单调递增,若f(m+1)<f(3m-1),则实数m的取值范围是m>1或m<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C上的任一点到点F(0,1)的距离减去它到x轴的距离的差都是1.
(1)求曲线C的方程;
(2)设直线y=kx+m(m>0)与曲线C交于A,B两点,若对于任意k∈R都有$\overrightarrow{FA}$•$\overrightarrow{FB}$<0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.幂函数y=f(x)的图象经过点(4,2),则$f({\frac{1}{4}})$的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知定义在R上的单调递增函数f(x)是奇函数,当x>0时,$f(x)=\sqrt{x}+1$.
(1)求f(0)的值及f(x)的解析式;
(2)若f(k•4x-1)<f(3•4x-2x+1)对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y2=2px(p>0),过焦点F,且倾斜角为60°的直线与抛物线交于A,B两点,若|AF|=6,则|BF|=2或18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆O:x2+y2=1,点M(x0,y0)是直线x-y+2=0上一点,若圆O上存在一点N,使得$∠NMO=\frac{π}{6}$,则y0的取值范围是[-2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.O为坐标原点,F为抛物线C:y2=4x的焦点,过F的直线交C于A,B且$\overrightarrow{FA}$=2$\overrightarrow{BF}$,则△OAB的面积为(  )
A.4B.$\sqrt{2}$C.$\frac{3\sqrt{2}}{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$f(x)=\sqrt{3}sinxcos({x+\frac{π}{6}})+cosxsin({x+\frac{π}{3}})+\sqrt{3}{cos^2}x-\frac{{\sqrt{3}}}{2}$.
(Ⅰ)当$x∈({0,\frac{π}{2}})$时,求f(x)的值域;
(Ⅱ)已知$\frac{π}{12}<α<\frac{π}{3}$,$f(α)=\frac{6}{5}$,$-\frac{π}{6}<β<\frac{π}{12}$,$f(β)=\frac{10}{13}$,求cos(2α-2β).

查看答案和解析>>

同步练习册答案