精英家教网 > 高中数学 > 题目详情
19.若在△ABC中,∠A=60°,b=1,S△ABC=$\frac{{\sqrt{3}}}{2}$,则△ABC外接圆的半径R=1.

分析 运用三角形的面积公式S=$\frac{1}{2}$bcsinA,求得c=2,由余弦定理可得a,再由正弦定理,即可得到所求半径R=1.

解答 解:由∠A=60°,b=1,S△ABC=$\frac{{\sqrt{3}}}{2}$,
则$\frac{1}{2}$bcsinA=$\frac{1}{2}$•1•c•$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$,
解得c=2,由余弦定理可得a2=b2+c2-2bccosA,
即a2=1+4-2•1•2•$\frac{1}{2}$=3,解得a=$\sqrt{3}$,
由正弦定理可得,$\frac{a}{sinA}$=2R=$\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}$=2,
解得R=1.
故答案为:1.

点评 本题考查正弦定理、余弦定理和三角形的面积公式的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2+2ax+1.
(1)当a=-1时,求函数f(x)在区间[-3,2]上的单调递减区间;
(2)若函数f(x)在区间[-3,2]上的最大值为4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知命题p:实数x满足不等式组$\left\{\begin{array}{l}2<{2^x}<8\\{x^2}-6x+8<0\end{array}\right.$命题q:实数x满足不等式(x-1)(x+a-12)≤0(其中a∈R).
(Ⅰ)解命题p中的不等式组;
(Ⅱ)若p是q的充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={x|ex$>\frac{1}{e}$},B={x|log2x<0},则A∩B等于(  )
A.{x|x<-1或x>1}B.{x|-1<x<1}C.{x|0<x<1}D.{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过点$P(-\sqrt{3},0)$作直线l与圆O:x2+y2=1交于A、B两点,O为坐标原点,设∠AOB=θ,且$θ∈(0,\frac{π}{2})$,当△AOB的面积为$\frac{{\sqrt{3}}}{4}$时,直线l的斜率为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$±\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$±\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知双曲线的中心在原点,焦点在x轴上,一条渐近线的倾斜角为$\frac{π}{3}$,点(-4,-6)在双曲线上,直线1的方程为x-my-4=0.
(1)求双曲线的方程;
(2)若l与双曲线的右支相交于A,B两点,试证:以AB为直径的圆M必与双曲线的右准线相交.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x3+bx2+d在区间(0,2)内为减函数,且2是函数的一个零点,则f(1)的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.直线l过A(-a,8)、B(2,2a)两点,且kAB=12,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,sinA+cosA=$\frac{\sqrt{2}}{2}$.
(1)求sinAcosA
(2)求sinA-cosA的值.

查看答案和解析>>

同步练习册答案