精英家教网 > 高中数学 > 题目详情

在平面几何里,已知Rt△SAB的两边SA,SB互相垂直,且SA=a,SB=b,则AB边上的高数学公式;现在把结论类比到空间:三棱锥S-ABC的三条侧棱SA,SB,SC两两相互垂直,SH⊥平面ABC,且SA=a,SB=b,SC=c,则点S到平面ABC的距离h'=________.


分析:设S到平面ABC的距离为h,过点S向底面ABC引垂线,垂足为O,连CO并延长交AB于M,连接SM,则SM⊥AB,CM⊥AB,在直角三角形SAB中可求得AB=,SM=,同理在直角三角形CSM中可求得|CM|=,于是S△ABC=•|AB|•|CM|==,由VS-ABC=VC-ABS,即可求得S到平面ABC的距离为h′.
解答:把结论类比到空间:三棱锥S-ABC的三条侧棱SA,SB,SC两两相互垂直,SH⊥平面ABC,且SA=a,SB=b,SC=c,则点S到平面ABC的距离h'=
证明:设S到平面ABC的距离为h′,过点S向底面ABC引垂线,垂足为O,连CO并延长交AB于M,连接SM,则SM⊥AB,CM⊥AB,
在直角三角形SAB中,由勾股定理得|AB|=,又ab=|AB|•|SM|
∴|SM|=
∵SA,SB,SC两两相互垂直,故SC⊥平面SAB,SM?平面SAB,
∴SC⊥SM,
∵在直角三角形CSM中,|CM|=
∴是S△ABC=•|AB|•|CM|==
由VS-ABC=VC-ABS可得:
abc=S△ABC•h′=•h′,
∴h′=
∴S到平面ABC的距离h′=
故答案为:
点评:本题考查类比推理,难点在于线面垂直(SC⊥平面SAB)的性质(SC⊥SM)的应用,着重考查类比推理的思想及等体积轮换公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面几何里,已知直角三角形ABC中,角C为90°,AC=b,BC=a,运用类比方法探求空间中三棱锥的有关结论:
有三角形的勾股定理,给出空间中三棱锥的有关结论:
在三棱锥O-ABC中,若三个侧面两两垂直,则
S
2
△OAB
+
S
2
△OAC
+
S
2
△OBC
=
S
2
△ABC
在三棱锥O-ABC中,若三个侧面两两垂直,则
S
2
△OAB
+
S
2
△OAC
+
S
2
△OBC
=
S
2
△ABC

若三角形ABC的外接圆的半径为r=
a2+b2
2
,给出空间中三棱锥的有关结论:
在三棱锥O-ABC中,若三个侧面两两垂直,且三条侧棱长分别为a,b,c,则其外接球的半径为r=
a2+b2+c2
2
在三棱锥O-ABC中,若三个侧面两两垂直,且三条侧棱长分别为a,b,c,则其外接球的半径为r=
a2+b2+c2
2

查看答案和解析>>

同步练习册答案