精英家教网 > 高中数学 > 题目详情
20.若a>0,且a≠1,则“函数y=ax在R上是减函数”是“函数y=(2-a)x3在R上是增函数”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 根据函数单调性之间的关系以及充分条件和必要条件的定义进行判断即可.

解答 解:若函数y=ax在R上是减函数,则0<a<1,此时2-a>0,则函数y=(2-a)x3在R上是增函数成立,即充分性成立,
若函数y=(2-a)x3在R上是增函数,则2-a>0,即0<a<2,则函数y=ax在R上不一定是减函数,即必要性不成立,
即“函数y=ax在R上是减函数”是“函数y=(2-a)x3在R上是增函数”的充分不必要条件,
故选:A.

点评 本题主要考查充分条件和必要条件的判断,根据函数单调性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.平面向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(1,y),$\overrightarrow{c}$=(2,-4),如果 $\overrightarrow{b}$∥$\overrightarrow{c}$,且$\overrightarrow{a}$⊥($\overrightarrow{b}$-$\overrightarrow{c}$),那么实数x,y的值分别是(  )
A.2,-2B.-2,-2C.$\frac{1}{2}$,2D.$\frac{1}{2}$,$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=Asin(ωx+φ)(ω>0,-π<φ<0)的部分图象如图所示,则下列判断正确的是(  )
A.函数f(x)的最小正周期为π
B.函数f(x)的值域为[-$\frac{7}{2}$,$\frac{7}{2}$]
C.函数f(x)的图象关于直线x=-$\frac{1}{6}$对称
D.函数f(x)的图象向右平移$\frac{1}{3}$个单位得到函数y=Asinωx的图象

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线ax+y+2=0的倾斜角为45°,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在四棱锥A-BCDE中,AB⊥平面BCDE,四边形BCDE为矩形,F、G分别为AC、AE的中点,AB=BC=2,BE=$\sqrt{2}$.
(Ⅰ)证明:EF⊥BD;
(Ⅱ)求点A到平面BFG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若集合M满足:?x,y∈M,都有x+y∈M,xy∈M,则称集合M是封闭的.显然,整数集Z,有理数集Q都是封闭的.对于封闭的集合M(M⊆R),f:M→M是从集合到集合的一个函数,
①如果都有f(x+y)=f(x)+f(y),就称是保加法的;
②如果?x,y∈M都有f(xy)=f(x)•f(y),就称f是保乘法的;
③如果f既是保加法的,又是保乘法的,就称f在M上是保运算的.
在上述定义下,集合$\left\{{\sqrt{3}m+n\left|{m,n∈Q}\right.}\right\}$是封闭的(填“是”或“否”);若函数f(x)在Q上保运算,并且是不恒为零的函数,请写出满足条件的一个函数f(x)=f(x)=x,x∈Q.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数$\frac{2}{1+i}$=(  )
A.2-iB.2-2iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线l:x+4y=2与圆C:x2+y2=1交于A、B两点,O为坐标原点,若直线OA、OB的倾斜角分别为α、β,则cosα+cosβ=(  )
A.$\frac{18}{17}$B.$-\frac{12}{17}$C.$-\frac{4}{17}$D.$\frac{4}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.A、B两个班共有65名学生,为调查他们的引体向上锻炼情况,通过分层抽样获得了部分学生引体向上的测试数据(单位:个),用茎叶图记录如下:
(I) 试估计B班的学生人数;
(II) 从A班和B班抽出的学生中,各随机选取一人,A班选出的人记为甲,B班选出的人记为乙,假设所有学生的测试相对独立,比较甲、乙两人的测试数据得到随机变量ξ.规定:
当甲的测试数据比乙的测试数据低时,记ξ=-1,
当甲的测试数据与乙的测试数据相等时,记ξ=0,
当甲的测试数据比乙的测试数据高时,记ξ=1.
求随机变量ξ的分布列及期望.
(III) 再从A、B两个班中各随机抽取一名学生,他们引体向上的测试数据分别是10,8(单位:个),这2个新数据与表格中的数据构成的新样本的平均数记μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小(结论不要求证明).

查看答案和解析>>

同步练习册答案