【题目】孝感星河天街购物广场某营销部门随机抽查了100名市民在2017年国庆长假期间购物广场的消费金额,所得数据如表,已知消费金额不超过3千元与超过3千元的人数比恰为3:2.
(1)试确定, , , 的值,并补全频率分布直方图(如图);
(2)用分层抽样的方法从消费金额在和的两个群体中抽取5人进行问卷调查,则各小组应抽取几人?若从这5人中随机选取2人,则此2人来自同一群体的概率是多少?
【答案】(1)见解析(2)2,3;
【解析】试题分析:(1)根据人数总和为100,以及比例关系列方程组解出, ,再根据频率等于频数除以总数,得, 的值,最后根据纵坐标等于对应概率除以组距描点补全直方图(2)先根据分层抽样得各小组人数,再利用枚举法得总事件数,从中抽出来自同一群体事件数,最后根据古典概型概率公式求概率
试题解析:解:(1)根据题意,有解得
∴, .
补全频率分布直方图如图所示:
(2)根据题意,消费金额在内的人数为(人),记为: , ,
消费金额在内的人数为(人),记为:1,2,3.
则从这5人中随机选取2人的选法为: , , , , , , , , , 共10种,
记2人来自同一群体的事件为,则中含有, , , 共4种,
∴.
科目:高中数学 来源: 题型:
【题目】某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一个居民月用电量标准,用电量不超过的部分按平价收费,超出的部分按议价收费.为此,政府调查了100户居民的月平均用电量(单位:度),以, , , , , , 分组的频率分布直方图如图所示.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)如果当地政府希望使左右的居民每月的用电量不超出标准,根据样本估计总体的思想,你认为月用电量标准应该定为多少合理?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为D的函数y=f(x),如果存在区间[m,n]D,同时满足:
①f(x)在[m,n]内是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].
则称[m,n]是该函数的“和谐区间”.
(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.
(2)求证:函数 不存在“和谐区间”.
(3)已知:函数 (a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(I)讨论函数在上的单调性;
(II)设函数存在两个极值点,并记作,若,求正数的取值范围;
(III)求证:当=1时, (其中e为自然对数的底数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,三棱柱ABC-A1B1Cl中,M,N分别为CC1,A1B1的中点.CA⊥CB1,CA=CB1,BA=BC=BB1.
(I)求证:直线MN//平面CAB1;
(II)求证:直线BA1⊥平面CAB1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在x=1处的切线与直线平行。
(Ⅰ)求a的值并讨论函数y=f(x)在上的单调性。
(Ⅱ)若函数 (为常数)有两个零点,
(1)求m的取值范围;
(2)求证: 。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(1)请分析函数y= +1是否符合公司要求的奖励函数模型,并说明原因;
(2)若该公司采用函数模型y= 作为奖励函数模型,试确定最小的正整数a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com