精英家教网 > 高中数学 > 题目详情
设不等式x2-1<logax(a>0,且a≠1)的解集为M,若(1,2)⊆M,则实数a的取值范围是______.
根据题意 不等式在1<x<2时恒成立
若a<1,则x2-logax-1 是单调递增的,∴x=2时,3-loga2<0 不合题意.
所以a>1
此时考虑两个函数 f(x)=x2-1 和 g(x)=logax,f(x)是二次函数,logax是对数函数,
故只要f(2)≤g(2),那么就能保证f(x)<g(x)在1<x<2时恒成立
∴3-loga2≤0
∴a3 ≤2
∴a≤2
1
3

∴1<a≤2
1
3

故答案为:1<a≤2
1
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩阵M的逆矩阵M-1
(Ⅱ)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cos∂
y=sin∂
(∂为参数)

(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
),判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直线ll:y=2x与直线l2:y=-2x之间的阴影区域(不含边界)记为w,其左半部分记为w1,右半部分记为W2
(1)分别用不等式组表示w1和w2
(2)若区域W中的动点P(x,y)到l1,l2的距离之积等于4,求点P的轨迹C的方程;
(3)设不过原点的直线l与曲线C相交于Ml,M2两点,且与ll,l2如分别交于M3,M4两点.求证△OMlM2的重心与△OM3M4的重心重合.
【三角形重心坐标公式:△ABC的顶点坐标为A(xl,y1),B(x2,y2),C(x3,y3),则△ABC的重心坐标为(
x1+x2+x3
3
y1+y2+y3
3
)】

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)A是由定义在[2,4]上且满足如下条件的函数φ(x)组成的集合:
(1)对任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常数L(0<L<0),使得对任意的x1,x2∈[1,2],都有|?(2x1)-?(2x2)|≤L|x1-x2|.
(Ⅰ)设φ(x)=
31+x
,x∈[2,4],证明:φ(x)∈A;
(Ⅱ)设φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的;
(Ⅲ)设φ(x)∈A,任取xn∈(1,2),令xn+1=φ(2nx),n=1,2,…,证明:给定正整数k,对任意的正整数p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.

查看答案和解析>>

科目:高中数学 来源:福建 题型:解答题

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 M=
a0
0b
(其中a>0,b>0).
(I)若a=2,b=3,求矩阵M的逆矩阵M-1
(II)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C’:
x2
4
+y2=1
,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cos∂
y=sin∂
(∂为参数)

(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
),判断点P与直线l的位置关系;
(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(I)求集合M;
(II)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

科目:高中数学 来源:2011年福建省高考数学试卷(理科)(解析版) 题型:解答题

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 (其中a>0,b>0).
(I)若a=2,b=3,求矩阵M的逆矩阵M-1
(II)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C’:,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;
(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(I)求集合M;
(II)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

同步练习册答案