精英家教网 > 高中数学 > 题目详情

【题目】已知奇函数上单调递减,且,则不等式的解集________.

【答案】

【解析】

根据题意,由奇函数的性质可得f(﹣3)=0,结合函数的单调性分析可得fx)>0fx)<0的解集,又由(x1fx)>0,分析可得x的取值范围,即可得答案.

根据题意,fx)为奇函数且f3)=0,则f(﹣3)=0

又由fx)在(﹣∞,0)上单调递减,则在(﹣∞,﹣3)上,fx)>0,在(﹣30)上,fx)<0

又由fx)为奇函数,则在(03)上,fx)>0,在(3+∞)上,fx)<0

fx)<0的解集为(﹣30)∪(3+∞),fx)>0的解集为(﹣∞,﹣3)∪(03);

x1fx)>0

分析可得:﹣1x01x3

故不等式的解集为(﹣30)∪(13);

故答案为(﹣30)∪(13);

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为 的周长为.

(1)求椭圆的标准方程;

(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年某开发区一家汽车生产企业计划引进一批新能源汽车制造设备,通过市场分析,全年需投入固定成本3000万元,每生产x(百辆),需另投入成本万元,且,由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完.

1)求出2019年的利润(万元)关于年产量x(百辆)的函数关系式;(利润=销售额成本)

22019年产量为多少(百辆)时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln2x-2aln(ex)+3,x∈[e-1,e2]

(1)当a=1时,求函数f(x)的值域;

(2)若f(x)≤-alnx+4恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司共有60位员工,为提高员工的业务技术水平,公司拟聘请专业培训机构进行培训.培训的总费用由两部分组成:一部分是给每位参加员工支付400元的培训材料费;另一部分是给培训机构缴纳的培训费.若参加培训的员工人数不超过30人,则每人收取培训费1000元;若参加培训的员工人数超过30人,则每超过1人,人均培训费减少20元.设公司参加培训的员工人数为x人,此次培训的总费用为y元.

(1)求出yx之间的函数关系式;

(2)请你预算:公司此次培训的总费用最多需要多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)讨论的单调性;

(2)若函数有两个极值点,且,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知函数,其中,求函数的图象恰好经过第一、二、三象限的概率;

(2)某校早上8:10开始上课,假设该校学生小张与小王在早上7:30~8:00之间到校,且每人到该时间段内到校时刻是等可能的,求两人到校时刻相差10分钟以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当m=1时,若方程在区间上有唯一的实数解,求实数a的取值范围;

查看答案和解析>>

同步练习册答案