精英家教网 > 高中数学 > 题目详情

【题目】如图,在直四棱柱中,底面为菱形,且侧棱 其中交点.

1)求点到平面的距离;

2)在线段上,是否存在一个点,使得直线垂直?若存在,求出线段的长;若不存在,请说明理由.

【答案】1;(2)存在,.

【解析】

(1)由于菱形的对角线互相垂直平分,故以ACBD的交点O为原点,以射线OAOB分别为轴,建立空间直角坐标系.由向量法求点到平面的距离.

2由向量的数量积为0求得,从而求得线段长.

(1) 由于菱形的对角线互相垂直平分,故以AC

BD的交点O为原点,以射线OAOB分别为

轴,建立空间直角坐标系.

由已知条件,相关点的坐标为

设平面的法向量为

,则.

故点到平面的距离为

(2) 则由

故当时,

于是,在线段上存在点,使得此时

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是各项均为正数的等差数列,其公差大于零.若线段的长分别为,则( .

A.对任意的,均存在以为三边的三角形

B.对任意的,均不存在以为三边的三角形

C.对任意的,均存在以为三边的三角形

D.对任意的,均不存在以为三边的三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:

研发费用(百万元)

2

3

6

10

13

15

18

21

销量(万盒)

1

1

2

2.5

3.5

3.5

4.5

6

(1)求的相关系数精确到0.01,并判断的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);

(2)该药企准备生产药品的三类不同的剂型,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型合格的概率分别为,第二次检测时,三类剂型合格的概率分别为.两次检测过程相互独立,设经过两次检测后三类剂型合格的种类数为,求的数学期望.

附:(1)相关系数

2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度)的7组观测数据,其散点图如所示:

根据散点图,结合函数知识,可以发现产卵数和温度可用方程来拟合,令,结合样本数据可知与温度可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:

27

74

182

表中

1)求和温度的回归方程(回归系数结果精确到);

2)求产卵数关于温度的回归方程;若该地区一段时间内的气温在之间(包括),估计该品种一只昆虫的产卵数的范围.(参考数据:.)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的函数,如果存在常数,对区间的任意划分:,和式恒成立,则称上的绝对差有界函数。注:

1)证明函数上是绝对差有界函数

2)证明函数不是上的绝对差有界函数

3)记集合存在常数,对任意的,有成立,证明集合中的任意函数绝对差有界函数,并判断是否在集合中,如果在,请证明并求的最小值;如果不在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是一块平行四边形园地,经测量,.拟过线段上一点 设计一条直路(点在四边形的边上,不计直路的宽度),将该园地分为面积之比为的左,右两部分分别种植不同花卉.(单位:m.

1)当点与点重合时,试确定点的位置;

2)求关于的函数关系式;

3)试确定点的位置,使直路的长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为F,短轴的两个端点分别为AB,且为等边三角形.

1)求椭圆C的方程;

2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N;过点Mx轴的垂线,垂足为H,直线与椭圆C交于另一点J,若,试求以线段为直径的圆的方程;

3)已知是过点A的两条互相垂直的直线,直线与圆相交于PQ两点,直线与椭圆C交于另一点R,求面积最大值时,直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视台举行一个比赛类型的娱乐节目,两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将队第六位选手的成绩没有给出,并且告知大家队的平均分比队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得晋级”.

1)主持人从队所有选手成绩中随机抽取2个,求至少有一个为晋级的概率;

2)主持人从两队所有选手成绩中分别随机抽取2个,记抽取到晋级选手的总人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是奇函数.

1)求实数的值;

2)判断函数上的单调性,并给出证明;

3)当时,函数的值域是,求实数的值

查看答案和解析>>

同步练习册答案