【题目】如图,在直四棱柱中,底面为菱形,且侧棱 其中为的交点.
(1)求点到平面的距离;
(2)在线段上,是否存在一个点,使得直线与垂直?若存在,求出线段的长;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知,,,是各项均为正数的等差数列,其公差大于零.若线段,,,的长分别为,,,,则( ).
A.对任意的,均存在以,,为三边的三角形
B.对任意的,均不存在以,,为三边的三角形
C.对任意的,均存在以,,为三边的三角形
D.对任意的,均不存在以,,为三边的三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:
研发费用(百万元) | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
销量(万盒) | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);
(2)该药企准备生产药品的三类不同的剂型,,,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型,,合格的概率分别为,,,第二次检测时,三类剂型,,合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后,,三类剂型合格的种类数为,求的数学期望.
附:(1)相关系数
(2),,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度()的7组观测数据,其散点图如所示:
根据散点图,结合函数知识,可以发现产卵数和温度可用方程来拟合,令,结合样本数据可知与温度可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:
27 | 74 | 182 |
表中,.
(1)求和温度的回归方程(回归系数结果精确到);
(2)求产卵数关于温度的回归方程;若该地区一段时间内的气温在之间(包括与),估计该品种一只昆虫的产卵数的范围.(参考数据:,,,,.)
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是定义在上的函数,如果存在常数,对区间的任意划分:,和式恒成立,则称为上的“绝对差有界函数”。注:。
(1)证明函数在上是“绝对差有界函数”。
(2)证明函数不是上的“绝对差有界函数”。
(3)记集合存在常数,对任意的,有成立,证明集合中的任意函数为“绝对差有界函数”,并判断是否在集合中,如果在,请证明并求的最小值;如果不在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是一块平行四边形园地,经测量,.拟过线段上一点 设计一条直路(点在四边形的边上,不计直路的宽度),将该园地分为面积之比为的左,右两部分分别种植不同花卉.设(单位:m).
(1)当点与点重合时,试确定点的位置;
(2)求关于的函数关系式;
(3)试确定点的位置,使直路的长度最短.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为F,短轴的两个端点分别为A,B,且,为等边三角形.
(1)求椭圆C的方程;
(2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N;过点M作x轴的垂线,垂足为H,直线与椭圆C交于另一点J,若,试求以线段为直径的圆的方程;
(3)已知是过点A的两条互相垂直的直线,直线与圆相交于P,Q两点,直线与椭圆C交于另一点R,求面积最大值时,直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电视台举行一个比赛类型的娱乐节目,两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将队第六位选手的成绩没有给出,并且告知大家队的平均分比队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得“晋级”.
(1)主持人从队所有选手成绩中随机抽取2个,求至少有一个为“晋级”的概率;
(2)主持人从两队所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为,求的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com