精英家教网 > 高中数学 > 题目详情
已知f(x)=
2x-a
x2+2
(x∈R)在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=
1
x
的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
分析:(Ⅰ)函数单调递增导数大于等于零列出不等式解之
(Ⅱ)根据一元二次方程根与系数的关系写出不等式先看成关于a的不等式恒成立再看成关于t的一次不等式恒成立,让两端点大等于零
解答:解:(Ⅰ)f'(x)=
4+2ax-2x2
(x2+2)2
=
-2(x2-ax-2)
(x2+2)2

∵f(x)在[-1,1]上是增函数,
∴f'(x)≥0对x∈[-1,1]恒成立,
即x2-ax-2≤0对x∈[-1,1]恒成立.①
设φ(x)=x2-ax-2,
方法一:φ
①?
φ(1)=1-a-2≤0
φ(-1)=1+a-2≤0
?-1≤a≤1,
∵对x∈[-1,1],f(x)是连续函数,且只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0
∴A={a|-1≤a≤1}.方法二:
①?
a
2
≥0
φ(-1)=1+a-2≤0
a
2
<0
φ(1)=1-a-2≤0

?0≤a≤1或-1≤a≤0
?-1≤a≤1.
∵对x∈[-1,1],f(x)是连续函数,且只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0
∴A={a|-1≤a≤1}.
(Ⅱ)由
2x-a
x2+2
=
1
x
,得x2-ax-2=0,∵△=a2+8>0
∴x1,x2是方程x2-ax-2=0的两非零实根,x1+x2=a,x1x2=-2,
从而|x1-x2|=
(  x1+x2)2- 4x1x2
=
a2+8

∵-1≤a≤1,∴|x1-x2|=
a2+8
≤3.
要使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,
当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立,
即m2+tm-2≥0对任意t∈[-1,1]恒成立.②
设g(t)=m2+tm-2=mt+(m2-2),
方法一:
②?g(-1)=m2-m-2≥0,g(1)=m2+m-2≥0,
?m≥2或m≤-2.
所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.
方法二:
当m=0时,②显然不成立;
当m≠0时,
②?m>0,g(-1)=m2-m-2≥0或m<0,g(1)=m2+m-2≥0
?m≥2或m≤-2.
所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.
点评:本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D,使得
f(x1)f(x2)
=C
,则称函数f(x)在D上的几何平均数为C.已知f(x)=2x,x∈[1,2],则函数f(x)=2x在[1,2]上的几何平均数为(  )
A、
2
B、2
C、2
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x可以表示成一个奇函数g(x)与一个偶函数h(x)之和,若关于x的不等式ag(x)+h(2x)≥0对于x∈[1,2]恒成立,则实数a的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大连一模)选修4-5:不等式选讲
已知f(x)=|2x-1|+ax-5(a是常数,a∈R)
(Ⅰ)当a=1时求不等式f(x)≥0的解集.
(Ⅱ)如果函数y=f(x)恰有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x+3,g(x)=4x-5,则使得f(h(x))=g(x)成立的h(x)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)已知f(x)=2x+x,则f-1(6)=
2
2

查看答案和解析>>

同步练习册答案