精英家教网 > 高中数学 > 题目详情
1.已知α,β均为锐角,sinα=$\frac{5}{13}$,cos(α+β)=$\frac{3}{5}$,求(1)sinβ,(2)tan(2α+β)

分析 (1)由已知利用同角三角函数基本关系式可求cosα,sin(α+β)的值,利用两角差的正弦函数公式即可计算得解.
(2)由(1)可求tanα,tan(α+β),进而利用两角和的正切函数公式即可计算得解.

解答 (本题满分为12分)
解:(1)∵α均为锐角,sinα=$\frac{5}{13}$,得cosα=$\frac{12}{13}$,
又∵α+β∈(0,π),cos(α+β)=$\frac{3}{5}$,可得:sin(α+β)=$\frac{4}{5}$,-----------(3分)
∴sinβ=sin(α+β-α)=sin(α+β)cosα-cos(α+β)sinα=$\frac{4}{5}×\frac{12}{13}$-$\frac{3}{5}×\frac{5}{13}$=$\frac{33}{65}$…6分
(2)∵tanα=$\frac{5}{12}$,tan(α+β)=$\frac{4}{3}$,…9分
∴tan(2α+β)=$\frac{tanα+tan(α+β)}{1-tanαtan(α+β)}$=$\frac{\frac{5}{12}+\frac{4}{3}}{1-\frac{5}{12}×\frac{4}{3}}$=$\frac{63}{16}$…12分

点评 本题主要考查了同角三角函数基本关系式,两角差的正弦函数公式,两角和的正切函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.程序框如图所示,则该程序运行后输出n的值是(  )
A.2016B.2017C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,其中|$\overrightarrow{a}$=$\sqrt{2}$,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是(  )
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:方程x2+mx+1=0有两个不相等的实根;命题q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,而p且q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f (x)=ax-lnx(a∈R).
(1)当a=1时,求f (x)的最小值;
(2)已知e为自然对数的底数,存在x∈[$\frac{1}{e}$,e],使得f (x)=1成立,求a的取值范围;
(3)若对任意的x∈[1,+∞),有f (x)≥f ($\frac{1}{x}$)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆心为(1,2)且过原点的圆的方程是(  )
A.(x-1)2+(y-2)2=2B.(x+1)2+(y+2)2=2C.(x-1)2+(y-2)2=5D.(x+1)2+(y+2)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求点M到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点A(2,0),离心率为$\frac{\sqrt{2}}{2}$,直线y=x-1与椭圆C交于不同的两点M、N.
(1)求椭圆C的方程;
(2)求△AMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A={x|1≤x≤3},B={x|x>2},全集U=R.
(1)求A∩B和A∪(∁UB); 
(2)已知非空集合C={x|1<x<a},若C⊆A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案