分析 根据正切函数的周期公式以及正切函数的性质进行求解即可.
解答 解:由正切函数的周期公式得函数的周期T=$\frac{π}{2}$;
由f(x)>1得tan(2x-$\frac{π}{4}$)>1,
得$\frac{π}{4}$+kπ<2x-$\frac{π}{4}$<$\frac{π}{2}$+kπ,得$\frac{kπ}{2}$+$\frac{π}{4}$<x<$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z,
即不等式的解集为$\{x|\frac{kπ}{2}+\frac{π}{4}<x<\frac{kπ}{2}+\frac{3π}{8},k∈Z\}$;
故答案为:$\frac{π}{2}$,$\{x|\frac{kπ}{2}+\frac{π}{4}<x<\frac{kπ}{2}+\frac{3π}{8},k∈Z\}$;
点评 本题主要考查正切函数的周期的计算以及正切函数的性质的应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 最小正周期为π的奇函数 | B. | 最小正周期为π的偶函数 | ||
C. | 最小正周期为$\frac{π}{2}$的奇函数 | D. | 最小正周期为$\frac{π}{2}$的偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a<0 | B. | a>0且a≠1 | C. | a<1 | D. | a<1且a≠0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,0] | B. | [-1,1] | C. | [0,2] | D. | [2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com