【题目】在平面直角坐标系xOy中,曲线C1的参数方程为(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=3.
(1)求曲线C1,C2的直角坐标方程.
(2)若M是曲线C1上的一点,N是曲线C2上的一点,求|MN|的最小值.
【答案】(1)C1:,C2:x+y-6=0;(2)
【解析】
(1)利用平方和为1消去参数θ得到曲线C1的直角坐标方程,利用y=ρsinθ,x=ρcosθ将极坐标方程转为直角坐标方程.
(2)设点M(4cosθ,3sinθ),利用点到直线的距离公式和正弦函数的性质可求得最值.
(1)由题意得,cosθ=①,②
①②式平方相加得:.
所以曲线C1的直角坐标方程;
曲线线C2的极坐标方程为,
即ρsinθ+ρcosθ-6=0,
所以曲线C2的直角坐标方程为x+y-6=0.
(2)设点M(4cosθ,3sinθ),C2:x+y-6=0.
由点到直线的距离公式得=,
当sin(θ+α)=1时,.
所以|MN|的最小值是.
科目:高中数学 来源: 题型:
【题目】如图的折线图是某公司2018年1月至12月份的收入与支出数据,若从6月至11月这6个月中任意选2个月的数据进行分析,则这2个月的利润(利润=收入﹣支出)都不高于40万的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在上的偶函数,满足,且在区间上是增函数,
①函数的一个周期为4;
②直线是函数图象的一条对称轴;
③函数在上单调递增,在上单调递减;
④函数在内有25个零点;
其中正确的命题序号是_____(注:把你认为正确的命题序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, , 平面, .
(1)设点为的中点,求证: 平面;
(2)线段上是否存在一点,使得直线与平面所成的角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,Sn为数列{an}的前n项和,则的最小值为( )
A.4B.3C.D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某竞赛的题库系统有60%的自然科学类题目,40%的文化生活类题目(假设题库中的题目总数非常大),参赛者需从题库中抽取3个题目作答,有两种抽取方法:方法一是直接从题库中随机抽取3个题目;方法二是先在题库中按照题目类型用分层抽样的方法抽取10个题目作为样本,再从这10个题目中任意抽取3个题目.
(1)两种方法抽取的3个题目中,恰好有1个自然科学类题目和2个文化生活类题目的概率是否相同?若相同,说明理由;若不同,分别计算出两种抽取方法对应的概率.
(2)已知某参赛者抽取的3个题目恰好有1个自然科学类题目和2个文化生活类题目,且该参赛者答对自然科学类题目的概率为,答对文化生活类题目的概率为.设该参赛者答对的题目数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点M到定点的距离和它到直线的距离的比是常数.
(1)求动点M的轨迹方程;
(2)令(1)中方程表示曲线C,点S(2,0),过点B(1,0)的直线l与曲线C相交于P,Q两点,求△PQS的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:
甲公司 | 乙公司 | |||||||||
职位 | A | B | C | D | 职位 | A | B | C | D | |
月薪/元 | 6000 | 7000 | 8000 | 9000 | 月薪/元 | 5000 | 7000 | 9000 | 11000 | |
获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 | |
(1)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;
(2)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿做了统计,得到以下数据分布:
选择意愿 人员结构 | 40岁以上(含40岁)男性 | 40岁以上(含40岁)女性 | 40岁以下男性 | 40岁以下女性 |
选择甲公司 | 110 | 120 | 140 | 80 |
选择乙公司 | 150 | 90 | 200 | 110 |
若分析选择意愿与年龄这两个分类变量,计算得到的K2的观测值为k1=5.5513,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?
附:
0.050 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com