精英家教网 > 高中数学 > 题目详情

【题目】第96届(春季)全国糖酒商品交易会于2017年3月23日至25日在四川举办.展馆附近一家川菜特色餐厅为了研究参会人数与本店所需原材料数量的关系,在交易会前查阅了最近5次交易会的参会人数(万人)与餐厅所用原材料数量(袋),得到如下数据:

(Ⅰ)请根据所给五组数据,求出关于的线性回归方程

(Ⅱ)若该店现有原材料12袋,据悉本次交易会大约有13万人参加,为了保证原材料能够满足需要,则该店应至少再补充原材料多少袋?

(参考公式:

【答案】(1).(2)20

【解析】试题分析:(Ⅰ)计算出,根据公式得到系数,进而可求得线性回归方程;(Ⅱ)将代入线性回归方程即可得结果.

试题解析:(Ⅰ)由数据,求得

由公式,求得

关于的线性回归方程为.

(Ⅱ)由,得

所以,该店应至少再补充原材料20袋.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是某组合体的三视图,则内部几何体的体积的最大值为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0且a≠1,函数f(x)=loga(x+1), , 记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)﹣m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+4ax+2a+6.
(1)若函数f(x)=log2 f(x)的最小值为2,求a的值;
(2)若对任意x∈R,都有f(x)≥0成立,求函数g(a)=2﹣a|a+3|的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某印刷厂为了研究印刷单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:

印刷册数(千册)

2

3

4

5

8

单册成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务.

①完成下表(计算结果精确到0.1);

印刷册数(千册)

2

3

4

5

8

单册成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

-0.1

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

②分别计算模型甲与模型乙的残差平方和,并通过比较 的大小,判断哪个模型拟合效果更好.

(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】非空集合A中的元素个数用(A)表示,定义(A﹣B)= ,若A={﹣1,0},B={x||x2﹣2x﹣3|=a},且(A﹣B)≤1,则a的所有可能值为(
A.{a|a≥4}
B.{a|a>4或a=0}
C.{a|0≤a≤4}
D.{a|a≥4或a=0}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,PA=AB=3,BC=2,E、F分别是棱AD,PC的中点
(1)求证:EF⊥平面PBC
(2)若直线PC与平面ABCD所成角为 ,点P在AB上的射影O在靠近点B的一侧,求二面角P﹣EF﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆, 在抛物线上,圆过原点且与的准线相切.

(Ⅰ) 求的方程;

(Ⅱ) 点,点(与不重合)在直线上运动,过点的两条切线,切点分别为, .求证: (其中为坐标原点).

查看答案和解析>>

同步练习册答案