精英家教网 > 高中数学 > 题目详情

【题目】选修4﹣4:极坐标与参数方程
极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为 ,曲线C2的极坐标方程为ρsinθ=a(a>0),射线 与曲线C1分别交异于极点O的四点A,B,C,D.
(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和C2化成直角坐标方程;
(Ⅱ)求|OA||OC|+|OB||OD|的值.

【答案】解:(Ⅰ)C1:即 ρ2=2 ρ( sinθ+ cosθ)=2ρsinθ+2ρcosθ,
化为直角坐标方程为 (x﹣1)2+(y﹣1)2=2.
把C2的方程化为直角坐标方程为 y=a,因为曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),
解得a=1,故C2的直角坐标方程为 y=1.
(Ⅱ)由题意可得, φ; =2 cos( +φ),
∴|OA||OC|+|OB||OD|=8sin(φ+ )sinφ+8cos( +φ)cosφ=8cos[( +φ)﹣φ]=8× =4
【解析】(Ⅰ)把C1、把C2的方程化为直角坐标方程,根据因为曲线C1关于曲线C2对称,可得直线y=a经过圆心(1,1),求得a=1,故C2的直角坐标方程.(Ⅱ)由题意可得, φ; =2 cos( +φ),再根据|OA||OC|+|OB||OD|=8sin(φ+ )sinφ+8cos( +φ)cosφ=8cos ,计算求得结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,证明: 为偶函数;

(2)若上单调递增,求实数的取值范围;

(3)若,求实数的取值范围,使上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了比较两种治疗失眠症的药(分别称为药, 药)的疗效,随机地选取18位患者服用药,18位患者服用药,这36位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:),试验的观测结果如下:

服用药的18位患者日平均增加的睡眠时间:

0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3

服用药的18位患者日平均增加的睡眠时间:

3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7

(1)分别计算两组数据的平均数(小数点后保留两位小数),从计算结果看哪种药疗效更好?

2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,圆的极坐标方程为.

(1)求直线的普通方程和圆的直角坐标方程;

(2)若点是直线上的动点,过作直线与圆相切,切点分别为,若使四边形的面积最小,求此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+1.
(Ⅰ)证明:当x>0时,f(x)≤x;
(Ⅱ)设 ,若g(x)≥0对x>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市物价监督部门为调研某公司新开发上市的一种产品销售价格的合理性,对该公司的产品的销售与价格进行了统计分析,得到如下数据和散点图:

定价(元/

10

20

30

40

50

60

年销售

1150

643

424

262

165

86

14.1

12.9

12.1

11.1

10.2

8.9

图(1)为散点图,图(2)为散点图.

(Ⅰ)根据散点图判断哪一对具有较强的线性相关性(不必证明);

(Ⅱ)根据(Ⅰ)的判断结果和参考数据,建立关于的回归方程(线性回归方程中的斜率和截距均保留两位有效数字);

(Ⅲ)定价为多少时,年销售额的预报值最大?(注:年销售额定价年销售)

参考数据:

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合 ,则A∩(RB)等于(
A.(﹣∞,1)
B.(0,4)
C.(0,1)
D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:

x

2

4

5

6

8

y

30

40

60

50

70

(1)若广告费与销售额具有相关关系,求回归直线方程;

(2)在已有的五组数据中任意抽取两组,求两组数据其预测值与实际值之差的绝对值都不超过5的概率.

查看答案和解析>>

同步练习册答案