精英家教网 > 高中数学 > 题目详情

极坐标系与直角坐标系xOy有相同的长度单位,以原点D为极点,以x轴正半轴为极轴,曲线Cl的极坐标方程为,曲线C2的参数方程为为参数)。
(1)当时,求曲线Cl与C2公共点的直角坐标; 
(2)若,当变化时,设曲线C1与C2的公共点为A,B,试求AB中点M轨迹的极坐标方程,并指出它表示什么曲线.

(1)(0,0)或(1,1)
(2),以为圆心,为半径的圆,除去点(0,0)

解析试题分析:(1)根据题意,由于曲线Cl的极坐标方程为,表示的为
曲线C2的参数方程为为参数))当时,直线方程为y=x,联立方程组可知,交点坐标为(0,0)或(1,1)
(2)由于,当变化时,设曲线C1与C2的公共点为A,B ,那么可知利用直角三角形的性质可知AB中点M轨迹方程为,以为圆心,为半径的圆,除去点(0,0)
考点:参数方程
点评:主要是考查了参数方程以及直角坐标方程的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知在直角坐标系中,曲线的参数方程为:为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为:
(Ⅰ)写出曲线和直线在直角坐标系下的方程;
(II)设点是曲线上的一个动点,求它到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知椭圆的左焦点为,左、右顶点分别为,上顶点为,过三点作圆  
(Ⅰ)若线段是圆的直径,求椭圆的离心率;
(Ⅱ)若圆的圆心在直线上,求椭圆的方程;
(Ⅲ)若直线交(Ⅱ)中椭圆于,交轴于,求的最大值  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

曲线C上任一点到定点(0,)的距离等于它到定直线的距离.
(1)求曲线C的方程;
(2)经过P(1,2)作两条不与坐标轴垂直的直线分别交曲线C于A、B两点,且,设M是AB中点,问是否存在一定点和一定直线,使得M到这个定点的距离与它到定直线的距离相等.若存在,求出这个定点坐标和这条定直线的方程.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知,其中.设直线的交点为,求动点的轨迹的参数方程(以为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左焦点为F, 离心率为, 过点F且与x轴垂直的直线被椭圆截得的线段长为.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设A, B分别为椭圆的左右顶点, 过点F且斜率为k的直线与椭圆交于C, D两点. 若, 求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆动圆与圆外切并与圆内切,圆心的轨迹为曲线.
(1)求的方程;
(2)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过抛物线的焦点F作斜率分别为的两条不同的直线,且相交于点A,B,相交于点C,D。以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为
(I)若,证明;
(II)若点M到直线的距离的最小值为,求抛物线E的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于S、T两点,与抛物线交于C、D两点,且

(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

同步练习册答案