精英家教网 > 高中数学 > 题目详情

【题目】已知函数,的导函数.

1)证明:在定义域上存在唯一的极大值点;

2)若存在,使,证明:.

【答案】(1)见解析;(2)见解析.

【解析】

1)对函数求导得,当时, ;当时,,所以上递减,又因为,,判断出单调性,即可证明在定义域上存在唯一的极大值点.

(2)假设存在,使,代入函数得,整理得.设新函数,求导结果大于,上递增,再设,则,即,,整理可得,根据对数均值不等式得出.

1,

时,,,,

”不能同时取到,所以

时,,所以上递减,

因为,,

所以在定义域存在唯一,使

时,;当时,,

所以在定义域上的唯一极值点且是极大值点.

2)存在,使,即,

.

,则,上递增,

不妨设,则,即,,

所以,得,

根据对数均值不等式,可得,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.

购买金额(元)

人数

10

15

20

15

20

10

1)求购买金额不少于45元的频率;

2)根据以上数据完成列联表,并判断是否有的把握认为购买金额是否少于60元与性别有关.

不少于60元

少于60元

合计

40

18

合计

附:参考公式和数据:.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面,四边形是边长为的菱形,.

1)证明:平面

2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,的中点,的交点.将沿折起到的位置,如图

)证明:平面

)若平面平面,求平面与平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线恰有一个公共点.

(Ⅰ)求曲线的极坐标方程;

(Ⅱ)已知曲线上两点满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若偶函数y=fx(满足f1+x=f1-x),且当时,,则函数gx=fx-的零点个数为_________个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,其中数列的前项和,

1)若数列是首项为.公比为的等比数列,求数列的通项公式;

2)若求证:数列满足,并写出的通项公式;

3)在(2)的条件下,设,求证中任意一项总可以表示成该数列其它两项之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R 且周期为1的函数,在区间上, 其中集合D=,则方程f(x)-lgx=0的解的个数是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形,平面,且,设分别为的中点.

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案