精英家教网 > 高中数学 > 题目详情
3.已知等差数列{xn},Sn是{xn}的前n项和,且x3=5,S5+x5=34.
(Ⅰ)求{xn}的通项公式;
(Ⅱ)设an=($\frac{1}{3}$)n,Tn是{an}的前n项和,是否存在正数λ,对任意正整数n,k,不等式Tn-λxk2<λ2恒成立?若存在,求λ的取值范围;若不存在,说明理由.

分析 (1)利用等差数列的通项公式即可得出;
(2)由${T_n}-λx_k^2<{λ^2}$恒成立,则$\frac{1}{2}[1-{(\frac{1}{3})^n}]-λ{({2k-1})^2}<{λ^2}$恒成立,化为${λ^2}+λ{(2k-1)^2}>\frac{1}{2}{[1-{({\frac{1}{3}})^n}]_{max}}$,${(2k-1)^2}≥\frac{{\frac{1}{2}-{λ^2}}}{λ}$,而[(2k-1)2]min=1,可得$1≥\frac{{\frac{1}{2}-{λ^2}}}{λ}$,即可得出.

解答 解:(1)由x3=5,S5+x5=34,
∴$\left\{\begin{array}{l}{x_1}+2d=5\\ 6{x_1}+14d=34\end{array}\right.⇒\left\{\begin{array}{l}{x_1}=1\\ d=2\end{array}\right.⇒{x_n}=2n-1$,
(2)Tn=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$=$\frac{1}{2}(1-\frac{1}{{3}^{n}})$.
由${T_n}-λx_k^2<{λ^2}$恒成立,则$\frac{1}{2}[1-{(\frac{1}{3})^n}]-λ{({2k-1})^2}<{λ^2}$恒成立,
即${λ^2}+λ{(2k-1)^2}>\frac{1}{2}{[1-{({\frac{1}{3}})^n}]_{max}}$,
∴${λ^2}+λ{({2k-1})^2}≥\frac{1}{2}$,
又λ>0,∴${(2k-1)^2}≥\frac{{\frac{1}{2}-{λ^2}}}{λ}$,
∵[(2k-1)2]min=1,∴$1≥\frac{{\frac{1}{2}-{λ^2}}}{λ}$,
即${λ^2}+λ-\frac{1}{2}≥0$,故$λ≥\frac{{\sqrt{3}-1}}{2}$.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、恒成立问题的等价转化方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在平面xOy内求一点P,使它到A(4,5,6),B(-7,3,11)的距离相等,到C(1,2,2),D(4,6,3)的距离也相等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)计算${27}^{\frac{2}{3}}$-2log23•log2$\frac{1}{8}$+lg4+2lg5;
(2)已知tanx=-$\frac{1}{3}$,求$\frac{1}{2sinxcosx+co{s}^{2}x}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和,已知数列{an}是等和数列,且a1=2,公和为5,试求:
(1)a18的值;
(2)该数列的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的共有(  )
A.360个B.180个C.120个D.24个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在数列{an}中,已知对任意n∈N*,a1+a2+a3+…+an=3n-1,则a12+a22+a32+…+a102=(  )
A.(310-1)2B.$\frac{{{9^{10}}-1}}{2}$C.910-1D.$\frac{{{3^{10}}-1}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}是等差数列,若a3+a10=10,则S12=(  )
A.60B.30C.240D.120

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)是定义在R上以2为周期的奇函数,当0≤x≤1时,f(x)=log2(4x+1),则f($\frac{13}{4}$)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x-klnx,常数k>0.
(1)若x=1是函数f(x)的一个极值点,求f(x)的单调区间;
(2)若函数g(x)=xf(x)在区间(1,2)上是增函数,求k的取值范围.

查看答案和解析>>

同步练习册答案