精英家教网 > 高中数学 > 题目详情
18.已知$\overrightarrow{a}$=(1,k),$\overrightarrow{b}$=(k,4),若$\overrightarrow{a}$与$\overrightarrow{b}$平行,则实数k的值为±2.

分析 利用向量共线定理即可得出.

解答 解:∵$\overrightarrow{a}$与$\overrightarrow{b}$平行,
∴k2-4=0,
解得k=±2.
故答案为:±2.

点评 本题考查了向量共线定理,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知直线y=k(x+2)(k>0)与焦点为F的抛物线y2=8x相交于A,B两点,若$|{\overrightarrow{AF}}|=4|{\overrightarrow{BF}}|$,则k=(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知角∂的顶点在原点,始边与x轴的正半轴重合,终边经过点$P(-3,\sqrt{3})$.
(1)求sin2∂-tan∂+$\frac{\sqrt{3}}{6}$的值;
(2)若函数f(x)=cos(x-α)cosα-sin(x-α)sinα,$\overrightarrow{a}$=(2cosx,1),$\overrightarrow{b}$=(cosx,-1)求函数y=$\sqrt{3}$f($\frac{π}{2}$-2x)-$\overrightarrow{a}$•$\overrightarrow{b}$-1在区间[0,$\frac{2π}{3}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若U={1,2,3,4,5,6,7,8},A={1,2,3,5},B={5,6,7},则(∁UA)∩B=(  )
A.{4,8}B.{5,6,7}C.{3,5,7}D.{6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.实数x,y满足不等式组$\left\{\begin{array}{l}{x+3y-2≥0}\\{x-3y+4≥0}\\{x-y-2≤0}\end{array}\right.$,则z=(x-1)2+(y-5)2的取值范围为(  )
A.[$\sqrt{10}$,20]B.[$\sqrt{10}$,26]C.[10,20]D.[10,26]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}中,公差d≠0,数列${a_{k_1}}$,${a_{k_2}}$,${a_{k_3}}$,…,${a_{k_n}}$,…是等比数列,其中k1=1,k2=7,k3=25.
(Ⅰ)求{${a_{k_n}}$}的通项公式(含参数d)及{kn}的通项公式;
(Ⅱ)若a1=9,bn=$\frac{1}{{\sqrt{{{log}_3}{a_{k_n}}}+\sqrt{{{log}_3}({k_n}+2)}}}$(n∈N+),Sn是数列{bn}的前n项和,求证:Sn<$\frac{n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.双曲线9x2-16y2=144的渐近线方程是(  )
A.y=±$\frac{9}{16}$xB.y=±$\frac{3}{4}$xC.y=±$\frac{16}{9}$xD.y=±$\frac{4}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)=$\left\{{\begin{array}{l}{sin\frac{πx}{6}(x≤0)}\\{1-2x(x>0)}\end{array}}$,则f(f(3))=(  )
A.1B.-1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow a=({-2,1}),\overrightarrow b=(1,m)$平行,则m=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案