精英家教网 > 高中数学 > 题目详情
11.下列各数中最小的数是(  )
A.111 111(2)B.210(6)C.1 000(4)D.110(8)

分析 2进制转换为十进制的方法是依次累加各位数字上的数×该数位的权重,其他进制数转化为十进制方法相同.

解答 解:把A、B、C、D项数都换成十进制数,那么,
111 111(2)=1×25+1×24+1×23+1×22+1×21+1×20=63,
210(6)=2×62+1×6+0×60=78,
1 000(4)=1×43=64,
110(8)=1×82+1×81+0×80=72,
故通过比较可知A中数最小.
故选:A.

点评 本题主要考查了任意进制数转化为十进制数的方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知:$\overrightarrow{a}$=(-2,m),且|$\overrightarrow{a}$|=3,则m=$±\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{5}}}{3}$,定点M(2,0),椭圆短轴的端点是B1,B2,且MB1⊥MB2
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点M且斜率不为0的直线交椭圆C于A,B两点.试问x轴上是否存在定点P,使△APB内切圆圆心的纵坐标为定值?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.椭圆$\frac{x^2}{25}+\frac{y^2}{169}=1$的焦点坐标是(0,12),(0,-12).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),两定直线l1x=-$\frac{{a}^{2}}{c}$,l2:x=$\frac{{a}^{2}}{c}$,直线l1恰为抛物线E:y2=16x的准线,直线l:x+2y-4=0与椭圆相切.
(1)求椭圆C的方程;
(2)如果椭圆C的左顶点为A,右焦点为F,过F的直线与椭圆C交于P,Q两点,直线AP,AQ与直线l2分别交于N,M两点,求证:四边形MNPQ的对角线的交点是定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4$\sqrt{3}$,P为椭圆上异于A1,A2的点,PA1和PA2的斜率之积为-$\frac{1}{3}$.以M(-3,2)为圆心,r为半径的圆与椭圆C交于A,B两点.
(1)求椭圆C的方程;
(2)若A,B两点关于原点对称,求圆M的方程;
(3)若点A的坐标为(0,2),求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若函数f(x)=3x2-5x+a的两个零点分别为x1,x2.且有-2<x1<0与1<x2<3,试求出a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆kx2+8ky2=8的一个焦点为$(\sqrt{21},0)$,则k的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点.
(Ⅰ)求证:平面FGH∥平面PDE;
(Ⅱ)求证:平面FGH⊥平面AEB;
(Ⅲ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案