精英家教网 > 高中数学 > 题目详情
(本小题满分13分)
已知椭圆的中点在原点O,焦点在x轴上,点是其左顶点,点C在椭圆上且·="0," ||=||.(点C在x轴上方)
(I)求椭圆的方程;
(II)若平行于CO的直线和椭圆交于M,N两个不同点,求面积的最大值,并求此时直线的方程.
(I);(II)

试题分析:(I)设椭圆的标准方程为


又∵C在椭圆上,

∴椭圆的标准方程为     …………5分
(II)设
∵CO的斜率为-1,
∴设直线的方程为
代入


又C到直线的距离
的面积

当且仅当时取等号,此时满足题中条件,
∴直线的方程为    …………13分
点评:本题考查椭圆方程的求法和弦长的运算,解题时要注意椭圆性质的灵活运用和弦长公式的合理运用。在求直线与圆锥曲线相交的弦长时一般采用韦达定理设而不求的方法,在求解过程中一般采取步骤为:设点→联立方程→消元→韦达定理→弦长公式。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,点,点为抛物线的焦点,
线段恰被抛物线平分.
(Ⅰ)求的值;
(Ⅱ)过点作直线交抛物线两点,设直线的斜率分别为,问能否成公差不为零的等差数列?若能,求直线的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若曲线与曲线有四个不同的交点,则实数m的取值范围是(   )
A.()B.(,0)∪(0,)
C.[]D.()∪(,+)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线的焦点为,准线为,为抛物线上的一点,,垂足为.若直线的斜率为,则
A.4B.8C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1F2分别是双曲线的左、右焦点,P是双曲线左支的一点, ,则该双曲线的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的实轴长是虚轴长的2倍,则rn=
A.B.C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线的焦点在圆上,则            

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=2Px,过点A(2,4),F为焦点,定点B的坐标为(8,-8),则|AF|∶|BF|值为
A.1∶4B.1∶2C.2∶5D.3∶8

查看答案和解析>>

同步练习册答案