【题目】“有黑扫黑、无黑除恶、无恶治乱”,维护社会稳定和和平发展.扫黑除恶期间,大量违法分子主动投案,某市公安机关对某月连续7天主动投案的人员进行了统计,表示第天主动投案的人数,得到统计表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
3 | 4 | 5 | 5 | 5 | 6 | 7 |
(1)若与具有线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)判定变量与之间是正相关还是负相关.(写出正确答案,不用说明理由)
(3)预测第八天的主动投案的人数(按四舍五入取到整数).
参考公式:, ./span>
科目:高中数学 来源: 题型:
【题目】在一个圆锥内作一个内接等边圆柱(一个底面在圆锥的底面上,且轴截面是正方形的圆柱),再在等边圆柱的上底面截得的小圆锥内做一个内接等边圆柱,这样无限的做下去.
(1)证明这些等边圆柱的体积从大到小排成一个等比数列;
(2)已知这些等边圆柱的体积之和为原来圆锥体积的,求最大的等边圆柱的体积与圆锥的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是( )
A.A,M,O三点共线B.A,M,O,A1不共面
C.A,M,C,O不共面D.B,B1,O,M共面
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形的边长为2,,分别为的中点,与交于点,将沿折起到的位置,使平面平面.
(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)判断线段上是否存在点,使平面?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过抛物线y2=2px(p>0)的焦点F的直线与抛物线交于A,B两点,且3,抛物线的准线l与x轴交与点C,AA1垂直l于点A1,若四边形AA1CF的面积为,则准线l的方程为( )
A.B.C.x=﹣2D.x=﹣1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线,且与坐标轴形成的三角形面积为.求:
(1)求证:不论为何实数,直线过定点P;
(2)分别求和时,所对应的直线条数;
(3)针对的不同取值,讨论集合直线经过P,且与坐标轴围成的三角形面积为中的元素个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入的分别为16,20,则输出的( )
A. 0B. 2C. 4D. 1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com