精英家教网 > 高中数学 > 题目详情

【题目】有黑扫黑、无黑除恶、无恶治乱,维护社会稳定和和平发展.扫黑除恶期间,大量违法分子主动投案,某市公安机关对某月连续7天主动投案的人员进行了统计,表示第天主动投案的人数,得到统计表格如下:

1

2

3

4

5

6

7

3

4

5

5

5

6

7

1)若具有线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

2)判定变量之间是正相关还是负相关.(写出正确答案,不用说明理由)

3)预测第八天的主动投案的人数(按四舍五入取到整数).

参考公式: ./span>

【答案】(1) (2) 正相关 (3)7

【解析】

1)先计算,再利用公式计算,即可求解回归方程

2)利用回归直线的斜率确定正相关

3)将代入回归直线即可预测

1)根据表中的数据,可得

又由

故所求回归直线方程为

2)正相关

3)当时,根据方程得

故预测第八天有7

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知分别为双曲线的左、右焦点,M为双曲线右支上一点且满足,若直线与双曲线的另一个交点为N,则的面积为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个圆锥内作一个内接等边圆柱(一个底面在圆锥的底面上,且轴截面是正方形的圆柱),再在等边圆柱的上底面截得的小圆锥内做一个内接等边圆柱,这样无限的做下去.

1)证明这些等边圆柱的体积从大到小排成一个等比数列;

2)已知这些等边圆柱的体积之和为原来圆锥体积的,求最大的等边圆柱的体积与圆锥的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCDA1B1C1D1是长方体,OB1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是( )

A.AMO三点共线B.AMOA1不共面

C.AMCO不共面D.BB1OM共面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形的边长为2分别为的中点,交于点,将沿折起到的位置,使平面平面

(Ⅰ)求证:平面平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)判断线段上是否存在点,使平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线的焦点,过点的直线与抛物线相交于不同的两点,抛物线两点处的切线分别是,且相交于点.,则的值是___(结果用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线y22pxp0)的焦点F的直线与抛物线交于AB两点,且3,抛物线的准线lx轴交与点CAA1垂直l于点A1,若四边形AA1CF的面积为,则准线l的方程为(

A.B.C.x=﹣2D.x=﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线,且与坐标轴形成的三角形面积为.求:

1)求证:不论为何实数,直线过定点P

2)分别求时,所对应的直线条数;

3)针对的不同取值,讨论集合直线经过P,且与坐标轴围成的三角形面积为中的元素个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入的分别为16,20,则输出的( )

A. 0B. 2C. 4D. 1

查看答案和解析>>

同步练习册答案