精英家教网 > 高中数学 > 题目详情
14.若A${\;}_{n}^{2}$=4C${\;}_{n-1}^{2}$,则n的值为(  )
A.7B.6C.5D.4

分析 根据排列数与组合数的公式,列出方程,求出n的值即可.

解答 解:∵A${\;}_{n}^{2}$=4C${\;}_{n-1}^{2}$,
∴n(n-1)=4×$\frac{(n-1)(n-2)}{2×1}$,
n=4;
∴n的值为4.
故选:D.

点评 本题考查了排列与组合公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图所示,在平面四边形ABCD中,$\overrightarrow{DA}•\overrightarrow{AB}=0,|{\overrightarrow{EC}}|=\sqrt{7},|{\overrightarrow{AD}}|=3,\overrightarrow{AE}=2\overrightarrow{ED}$,$\overrightarrow{DA}$与$\overrightarrow{DC}$的夹角为$\frac{2}{3}π$,$\overrightarrow{EC}$与$\overrightarrow{EB}$的夹角为$\frac{π}{3}$.
(1)求△CDE的面积S;
(2)求$|{\overrightarrow{BE}}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.
①求b,c的值;
②已知a∈R,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=x+$\frac{1}{x-1}$(x>1)的最小值是3;此时x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在长方体ABCD-A1B1C1D1中,E为DD1的中点.
(1)判断BD1与平面AEC的位置关系,并证明你的结论.
(2)若AB=BC=$\sqrt{3}$,CC1=2,求异面直线AE、BD1所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.给出下列四个不等式:①当x∈R时,sin x+cos x>-$\frac{3}{2}$;②对于正实数x,y及任意实数α,有xsin2α•ycos2α<x+y;③x是非0实数,则|x+$\frac{1}{x}$|≥2;④当α,β∈( 0,$\frac{π}{2}$)时,|sin α-sin β|≤|α-β|.在以上不等式中不成立的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设k>0,若关于x的不等式kx+$\frac{4}{x-1}$≥12在(1,+∞)上恒成立,则k的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若方程ax-x-a=0有两个实数解,则a的取值范围是(  )
A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设{an}是首项为1的正项数列,且$({n+1})a_{n+1}^2-na_n^2+{a_{n+1}}{a_n}=0$(n=1,2,3,…),则它的通项公式是a100=(  )
A.100B.$\frac{1}{100}$C.101D.$\frac{1}{101}$

查看答案和解析>>

同步练习册答案