精英家教网 > 高中数学 > 题目详情

【题目】已知四棱柱的底面是边长为的菱形,且平面,设的中点

1)求证:平面

2)点在线段上,且平面,求平面和平面所成锐角的余弦值.

【答案】1)证明略;(2

【解析】试题分析:(1)由已知该四棱柱为直四棱柱,且为等边三角形,,所以平面,故,在中的三边长分别为,所以,所以,故平面

2)取中点,则由为等边三角形,知,从而,以为坐标轴,建立空间直角的坐标系,求得平面和平面的法向量,即可求得平面和平面所成锐角的余弦值.

试题解析:(1)证明:由已知该四棱柱为直四棱柱,且为等边三角形,

所以平面,而平面,故

因为的三边长分别为,故为等腰直角三角形

所以,结合知:平面

2)解:取中点,则由为等边三角形

,从而

为坐标轴,建立如图所示的坐标系

此时,

,设

由上面的讨论知平面的法向量为

由于平面,故平面

,故

设平面的法向量为

,取,故

设平面和平面所成锐角为,则

即平面和平面所成锐角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:

3

4

5

6

2.5

3

4

4.5

(1)已知产量和能耗呈线性关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该厂技改前100吨甲产品的生产耗能为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和

1求数列的通项公式;

2设数列的通项,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)若函数满足:

对任意的,当时,有成立;

恒成立.求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家实行二孩生育政策后,为研究家庭经济状况对生二胎的影响,某机构在本地区符合二孩生育政策的家庭中,随机抽样进行了调查,得到如下的列联表:

经济状况好

经济状况一般

合计

愿意生二胎

50

不愿意生二胎

20

110

合计

210

1请完成上面的列联表,并判断能否在犯错误的概率不超过的前提下认为家庭经济状况与生育二胎有关

2若采用分层抽样的方法从愿意生二胎的家庭中随机抽取4个家庭,则经济状况好和经济状况一般的家庭分别应抽取多少个?

32的条件下,从中随机抽取2个家庭,求2个家庭都是经济状况好的概率.

附:

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,四边形是直角梯形, 底面 的中点, 点在上,且.

(1)证明: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E=1(ab>0),其左右焦点为F1F2,过F2的直线l交椭圆E于A,B两点,△AB F1的周长为8,且△AF1F2的面积最大时,△AF1F2为正三角形。

(1)求椭圆E的方程;

(2)若MN是椭圆E经过 原点的弦,MN||AB,求证: 为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点坐标分别是,并且经过.

(1)求椭圆的标准方程;

(2)过椭圆的右焦点作直线,直线与椭圆相交于两点,当的面积最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为2的菱形,平面的中点.

(1)求证:平面平面

(2)若,求三棱锥的体积.

查看答案和解析>>

同步练习册答案