精英家教网 > 高中数学 > 题目详情
设抛物线的准线与轴交于,焦点为,以,为焦点,离心率为的椭圆的两条准线之间的距离为                                                 (   )
A.4 B.6 C.8D.10
C
椭圆两准线间的距离为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)以下是有关椭圆的两个问题:
问题1:已知椭圆,定点A(1, 1),F是右焦点,P是椭圆上动点,则有最小值;
问题2:已知椭圆,定点A (2, 1),F是右焦点,
P是椭圆上动点,有最小值;

(Ⅰ)求问题1中的最小值,并求此时P点坐标;
(Ⅱ)试类比问题1,猜想问题2中的值,并谈谈你作此猜想的依据.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆以正方形的两个顶点为焦点且过另外两个顶点,那么此椭圆的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P点在椭圆上运动,Q,R分别在两圆上运动,则|PQ|+|PR|的最大值为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)设椭圆的离心率右焦点到直线的距离为坐标原点。

(Ⅰ)求椭圆的方程;
(Ⅱ)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直线的距离为定值,并求弦长度的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若,则C的离心率为               

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
在平面直角坐标系中,点为动点,已知点,直线的斜率之积为.
(I)求动点轨迹的方程;
(II)过点的直线交曲线两点,设点关于轴的对称点为(不重合),求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆+ =1(a>b>c>0,a2=b2+c2)的左右焦点分别为F1,F2,若以F2为圆心,b―c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且|PT|的最小值为(a―c),则椭圆的离心率e的取值范围是            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

经过两点的椭圆标准方程(    ).
A.B.C.D.

查看答案和解析>>

同步练习册答案