精英家教网 > 高中数学 > 题目详情
已知f(x)=sin(ωx+
π
3
)的图象与直线y=1的相邻两交点的距离为π,现将函数的图象向左平移
π
4
个单位长度后,得到的函数图象的解析式为
 
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:由周期求得ω=2,再根据函数y=Asin(ωx+φ)的图象变换规律,可得所得的函数图象的解析式.
解答: 解:∵已知f(x)=sin(ωx+
π
3
)的图象与直线y=1的相邻两交点的距离为π,∴T=
ω
=π,求得ω=2.
现将函数的图象向左平移
π
4
个单位长度后,得到的函数图象的解析式为y=sin[2(x+
π
4
)+
π
3
]=sin(2x+
6
),
故答案为:y=sin(2x+
6
).
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=
-x2+2ax-2a,x≥1
ax+1,x<1
是(-∞,+∞)上的减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+b(a、b为常数).
(1)如果函数f(x)是区间[b-2,b]上的偶函数,求a、b的值;
(2)设函数g(x)=log2x.
①判断g(x)在区间[1,4]上的单调性,并写出g(x)在区间[1,4]上的最小值和最大值;
②阅读下面题目及解法:
题目:对任意x∈[1,4],2x+m恒大于1,求实数m的取值范围.
解:设h(x)=2x+m,则对任意x∈[1,4],2x+m恒大于1?当x∈[1,4],h(x)min>1.
由h(x)在区间[1,4]上递增,知h(x)min=h(1)=2+m>1,所以m>-1.
学习以上题目的解法,试解决下面问题:
当f(x)中的a=4时,若对任意x1、x2∈[1,4],f(x1)恒大于g(x2),求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义R上的偶函数,且在[0,+∞)上是增函数,若f(x)<f(1),则x的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=(
1
2
 -x2+x+2的单调增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,函数f(x)=lg(ax2-2x-2a)的定义域为A,B={x|1<x<3},A∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个集合A={x|x2-3x+2=0},B={x|x2-ax+(a-1)=0},C={x|x2-2x+b=0},问同时满足B是A的真子集,C是A的子集的实数a,b是否存在?若存在求出a,b所有值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a(x-
1
x
)-2lnx(a∈R)
(1)求函数f(x)的单调区间;
(2)设函数g(x)=-
a
x
,若至少存在一个x0∈[1,e],使得f(x0)>g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是半圆O的直径,C是半圆O上异于A,B的点,CD⊥AB,垂足为D.若AD=2,BC=2
6
,则半圆O的面积为
 

查看答案和解析>>

同步练习册答案