精英家教网 > 高中数学 > 题目详情
10.若偶函数f(x)在[1,+∞)上是减函数,则下列关系式中成立的是(  )
A.$f(2)<f(-\frac{3}{2})<f(-1)$B.$f(-\frac{3}{2})<f(-1)<f(2)$C.$f(2)<f(-1)<f(-\frac{3}{2})$D.$f(-1)<f(-\frac{3}{2})<f(2)$

分析 由f(x)为偶函数即可得到$f(-\frac{3}{2})=f(\frac{3}{2}),f(-1)=f(1)$,而根据f(x)在[1,+∞)上为减函数即可比较$f(2),f(\frac{3}{2}),f(1)$的大小关系,从而得出$f(2),f(-\frac{3}{2}),f(-1)$的大小关系,即得出正确选项.

解答 解:f(x)为偶函数;
∴$f(-\frac{3}{2})=f(\frac{3}{2}),f(-1)=f(1)$;
又f(x)在[1,+∞)上是减函数;
∴$f(2)<f(\frac{3}{2})<f(1)$;
即$f(2)<f(-\frac{3}{2})<f(-1)$.
故选A.

点评 考查偶函数的定义,减函数的定义,以及根据减函数定义比较函数值大小的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设命题p:?x∈R,x2-ax+1≥0,命题q:?x>0,$\frac{{x}^{2}+1}{x}$<a,若(¬p)∨q是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}满足:${log_3}a{\;}_n+1={log_3}{a_{n+1}},({n∈{N^+}})$,且a2+a4+a6=9,则${log_{\frac{1}{3}}}({a_5}+{a_7}+{a_9})$的值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,则实数m的取值范围为.(  )
A.[-2,1)B.[-2,1]C.[-2,-1)D.[-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.研究函数$f(x)=\frac{{{x^2}+3}}{{{x^2}-4}}$的性质,并作出其图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0相切.
(1)求圆的方程;
(2)设直线kx-y+5=0与圆相交于A,B两点,求实数k的取值范围;
(3)在(2)的条件下,是否存在实数k,使得过点P(2,-4)的直线l垂直平分弦AB?若存在,求出实数k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题“?x>0,lnx>0”的否定是(  )
A.?x>0,lnx>0B.?x>0,lnx>0C.?x>0,lnx≥0D.?x>0,lnx≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆G的中心在平面直角坐标系的原点,离心率$e=\frac{1}{2}$,右焦点与圆C:x2+y2-2x-3=0的圆心重合.
(Ⅰ)求椭圆G的方程;
(Ⅱ)设F1、F2是椭圆G的左焦点和右焦点,过F2的直线l:x=my+1与椭圆G相交于A、B两点,请问△ABF1的内切圆M的面积是否存在最大值?若存在,求出这个最大值及直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.命题“若a>b,则ac>bc”(a,b,c都是实数)与它的逆命题、否命题和逆否命题中,真命题的个数是(  )
A.4B.3C.2D.0

查看答案和解析>>

同步练习册答案