精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线上一点到其焦点的距离为5.

1)求的值;

2)设动直线与抛物线相交于两点,问:在轴上是否存在与的取值无关的定点,使得?若存在,求出点的坐标;若不存在,说明理由.

【答案】1, 2)存在点.

【解析】

1)由抛物线上点的焦半径为可求得,从而再求得

2)假设设存在点满足条件,令,条件转化为,即,整理得:,由直线方程与抛物线方程联立后消去(注意讨论的情形),得的方程,由韦达定理得,代入它是与无关的等式,从而可得

1)根据抛物线定义,点到焦点的距离等于它到准线的距离,即

,解得,∴抛物线方程为

在抛物线上,得,∴.

2)抛物线方程为:

,直线只与抛物线有一个交点,显然不成立,

时,令,设存在点满足条件,

即:

整理得:

,整理得

,解的

因此存在点满足题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,分别为的左、右顶点,直线的斜率之积为为椭圆的右焦点,直线.

1)求椭圆的方程;

2)直线过点且与椭圆交于两点,直线分别与直线交于两点.试问:以为直径的圆是否过定点?如果是,求出定点坐标,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,设函数有最小值,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形中,ABCD,且.现以为一边向梯形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,如图2.

(Ⅰ)求证:BC⊥平面DBE

(Ⅱ)求点D到平面BEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

(1)求函数的单调区间;

(2)若函数上恰有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,;

若函数上存在零点,求a的取值范围;

设函数,,当时,若对任意的,总存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.

(Ⅰ)求图中的值;

(Ⅱ)用样本估计总体,以频率作为概率,若在两块试验地随机抽取3棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;

(Ⅲ)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.

优质花苗

非优质花苗

合计

甲培育法

20

乙培育法

10

合计

附:下面的临界值表仅供参考.

0.15

0.10

0.05

0.025

0.010

0.005

<>0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数yf(x)的导函数的图象如图所示,给出下列判断:

①函数yf(x)在区间内单调递增;

②函数yf(x)在区间内单调递减;

③函数yf(x)在区间(4,5)内单调递增;

④当x2时,函数yf(x)有极小值;

⑤当x时,函数yf(x)有极大值.

则上述判断中正确的是(  )

A. ①② B. ②③

C. ③④⑤ D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在实数使得则称是区间一内点.

(1)求证:的充要条件是存在使得是区间一内点;

(2)若实数满足:求证:存在,使得是区间一内点;

(3)给定实数,若对于任意区间是区间的一内点,是区间的一内点,且不等式和不等式对于任意都恒成立,求证:

查看答案和解析>>

同步练习册答案