精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=$\sqrt{x}$的反函数是f-1(x),则f-1(4)=16.

分析 先求出x=y2,y≥0,互换x,y,得f-1(x)=x2,x≥0,由此能求出f-1(4).

解答 解:∵函数f(x)=y=$\sqrt{x}$的反函数是f-1(x),
∴x=y2,y≥0,
互换x,y,得f-1(x)=x2,x≥0,
∴f-1(4)=42=16.
故答案为:16.

点评 本题考查反函数的求法,是基础题,解题时要认真审题,注意反函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE=30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足$tanθ=\frac{3}{4}$.
(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?
(2)在保证上述采光要求的前提下,如何设计AB与AD的长度,可使得活动中心的截面面积最大?(注:计算中π取3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.$cos\frac{2017π}{3}$等于(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C的方程是$\frac{x^2}{4}+\frac{y^2}{3}=1$,直线l:y=kx+m与椭圆C有且仅有一个公共点,若F1M⊥l,F2N⊥l,M,N分别为垂足.
(Ⅰ)证明:$|{{F_1}M}|+|{{F_2}N}|≥2\sqrt{3}$;
(Ⅱ)求四边形F1MNF2面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆C:x2+y2-2x+4y=0,则圆C的半径为$\sqrt{5}$,过点(2,1)的直线中,被圆C截得弦长最长的直线方程为3x-y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ 0$\frac{π}{2}$  π$\frac{3π}{2}$  2π
 x-$\frac{π}{12}$ $\frac{π}{6}$$\frac{5π}{12}$ $\frac{2π}{3}$$\frac{11π}{12}$
 f(x) 3-3
(1)请将表中数据补充完整,并直接写出函数f(x)的解析式;
(2)若将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数g(x)的图象,求当x∈[-$\frac{π}{3}$,$\frac{π}{3}$]时,函数g(x)的值域;
(3)若将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=h(x)的图象,若=h(x)图象的一个对称中心为($\frac{π}{12},0$),求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设F1,F2分别为双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的两个焦点,M,N是双曲线C的一条渐近线上的两点,四边形MF1NF2为矩形,A为双曲线的一个顶点,若△AMN的面积为$\frac{1}{2}{c}^{2}$,则该双曲线的离心率为(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图是函数f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)的部分图象,则f(3x0)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{-x+a,x<1}\\{{x}^{2},x≥1}\end{array}\right.$存在最小值,则当实数a取最小值时,f[f(-2)]=(  )
A.-2B.4C.9D.16

查看答案和解析>>

同步练习册答案