精英家教网 > 高中数学 > 题目详情

【题目】设函数是定义在R上的函数,对任意实数x,有f(1﹣x)=x2﹣3x+3.

(1)求函数的解析式;

(2)若函数在g(x)=f(x)﹣(1+2m)x+1(mR)在上的最小值为﹣2,求m的值.

【答案】(1)f(x)=x2+x+1;(2)2.

【解析】

(1)令,则,利用换元法即可求解函数的解析式;

(2)结合(1)中的结论,分类讨论求得函数的最值,即可求解结果

解:(1)令1﹣x=t,则x=1﹣t,f(t)=(1﹣t)2﹣3(1﹣t)+3,

f(t)=t2+t+1,∴函数的解析式为f(x)=x2+x+1.

(2)g(x)=x2﹣2mx+2=(x﹣m)2+2﹣m2).

g(x)min=g(m)=2﹣m2=﹣2,m=2.

,舍去.

综上可知m=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=lnx+
(1)函数g(x)=h(2x+m),若x=1是g(x)的极值点,求m的值并讨论g(x)的单调性;
(2)函数φ(x)=h(x)﹣ +ax2﹣2x有两个不同的极值点,其极小值为M,试比较2M与﹣3的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(Ⅰ)求证:

(Ⅱ)求证:

(Ⅲ)在(Ⅱ)中的不等式中,能否找到一个代数式,满足所求式?若能,请直接写出该代数式;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数是奇函数。

(1)求a的值.

(2)判断函数fx)在R上的单调性并证明你的结论.

(3)求函数fx)在R上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题一定正确的是(
A.在等差数列{an}中,若ap+aq=ar+aδ , 则p+q=r+δ
B.已知数列{an}的前n项和为Sn , 若{an}是等比数列,则Sk , S2k﹣Sk , S3k﹣S2k也是等比数列
C.在数列{an}中,若ap+aq=2ar , 则ap , ar , aq成等差数列
D.在数列{an}中,若ap?aq=a ,则ap , ar , aq成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】件产品,其中件是次品,其余都是合格品,现不放回的从中依次抽.求:(1)第一次抽到次品的概率;

2)第一次和第二次都抽到次品的概率;

3)在第一次抽到次品的条件下,第二次抽到次品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处取得极值.

(1)求的值;

(2)若有极大值,求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)时,求

(2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 由经验得知,在某商场付款处排队等候付款的人数及概率如下表

排队人数

0

1

2

3

4

5人以上

概率

0.1

0.16

0.3

0.3

0.1

0.04

(1)至多有2人排队的概率是多少?

(2)至少有2人排队的概率是多少?

查看答案和解析>>

同步练习册答案