精英家教网 > 高中数学 > 题目详情

【题目】如图在四棱柱ABCD-A1B1C1D1已知平面AA1C1C⊥平面ABCDAB=BC=CA=AD=CD=1.

(1)求证BD⊥AA1.

(2)在棱BC上取一点E使得AE∥平面DCC1D1的值.

【答案】(1)见解析21

【解析】(1)在四边形ABCD中,因为BA=BC,DA=DC,所以BD⊥AC,平面AA1C1C⊥平面ABCD,且平面ACC1A1∩平面ABCD=AC,BD平面ABCD,所以BD⊥平面ACC1A1,又AA1平面ACC1A1,所以BD⊥AA1.

(2)点E为BC的中点,即=1

下面给予证明:在三角形ABC中,因为AB=AC,且E为BC的中点,所以AE⊥BC,又在四边形ABCD中,AB=BC=CA=,DA=DC=1,所以∠ACB=60°,∠ACD=30°,所以DC⊥BC,即平面ABCD中有AE∥DC.因为DC平面DCC1D1,AE平面DCC1D1,所以AE∥平面DCC1D1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为xx≥10)层,则每平方米的平均建筑费用为56048x(单位:元).

1)写出楼房平均综合费用y关于建造层数x的函数关系式;

2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?

(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用/建筑总面积)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某林区的森林蓄积量每年比上一年平均增长9.5%,要增长到原来的x需经过y则函数yf(x)的图像大致为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

(1)若的定义域为,求实数的取值范围;

(2)当时,求函数的最小值

(3)是否存在非负实数,使得函数的定义域为,值域为,若存在,求出的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求的单调区间;

(2)若有最大值,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (R)

(1) ,求函数的极值;

2)是否存在实数使得函数在区间上有两个零点,若存在,求出的取值范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数,曲线的参数方程为为参数,在以为极点,轴的正半轴为极轴的极坐标系中,射线,与各有一个交点,当时,这两个交点间的距离为2,当,这两个交点重合

1分别说明是什么曲线,并求出的值;

2设当时,的交点分别为,当的交点分别为,求四边形的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为.

(1)若出现故障的机器台数为,求的分布列;

(2) 该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?

(3)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名工人,求该厂每月获利的均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, ,四边形为矩形,平面平面

1)求证: 平面

2)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.

查看答案和解析>>

同步练习册答案