精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,讨论函数的单调性;

(2)若不等式对于任意成立,求正实数的取值范围.

【答案】(1) 当时,函数上单调递增,在上单调递减;当时,函数上单调递减,在上单调递增. (2)

【解析】试题分析:(1)先求出函数f(x)的导数,通过讨论a的范围,得到函数的单调性;(2)原题等价于对任意,有成立,设,所以.

试题解析:

(1)函数的定义域为

,则

时,单调递增;

时,单调递减,

,则

时,单调递减;

时,单调递增.

综上所述,当时,函数上单调递增,在上单调递减;当时,函数上单调递减,在上单调递增.

(2)原题等价于对任意,有成立,

,所以

,得;令,得

所以函数上单调递减,在上单调递增,

中的较大值,

所以上单调递增,故,所以

从而

所以,即

,则

所以上单调递增,

,所以的解为

因为,所以正实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(12分)

已知函数.

(1)当时,判断函数的单调性;

(2)若函数处取得极大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,之后增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润与时间的关系,可选用

A.一次函数B.二次函数

C.指数型函数D.对数型函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,每人需交费用为900元;若旅行团人数多于30,则给予优惠:每多1,人均费用减少10,直到达到规定人数75人为止.旅行社需支付各种费用共计15000元.

1)写出每人需交费用关于人数的函数;

2)旅行团人数为多少时,旅行社可获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了了解声音强度(单位:分贝)与声音能量(单位:)之间的关系,将测量得到的声音强度和声音能量,2,…,10)数据作了初步处理,得到如图散点图及一些统计量的值.

表中

(1)根据散点图判断,哪一个适宜作为声音强度关于声音能量的回归方程类型?(给出判断即可,不必说明理由)

(2)根据表中数据,求声音强度关于声音能量的回归方程;

(3)当声音强度大于60分贝时属于噪音,会产生噪音污染,城市中某点共受到两个声源的影响,这两个声源的声音能量分别是,且.已知点的声音能量等于声音能量之和.请根据(1)中的回归方程,判断点是否受到噪音污染的干扰,并说明理由.

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆台的上、下底面半径分别为,母线长,从圆台母线的中点拉一条绳子绕圆台侧面转到在下底面,求:

1绳子的最短长度;

2在绳子最短时,上底圆周上的点到绳子的最短距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,是边长为的正三角形,为棱的中点.

()求证:平面

()若平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在吸烟与患肺病是否相关的判断中,有下面的说法:

1)从独立性分析可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有的可能性使得推断错误.

2)从独立性分析可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有的可能患有肺病;

3)若,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;

其中说法正确的是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2aln x(aR).

(1)f(x)x=2处取得极值,求a的值;

(2)f(x)的单调区间;

(3)求证:当x>1时, x2+ln x<x3.

查看答案和解析>>

同步练习册答案