精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M 在椭圆E上. (Ⅰ)求椭圆E的标准方程;
(Ⅱ)设P(﹣4,0),直线y=kx+1与椭圆E交于A,B两点,若∠APO=∠BPO,(其中O为坐标原点),
求k的值.

【答案】解:(Ⅰ)因为抛物线焦点为(1,0),所以椭圆的焦点坐标为F2(1,0),F1(﹣1,0),

又因为M(1, )在椭圆上,

所以2a=|MF1|+|MF2|= + =4,

即a=2,又因为c=1 所以b2=a2﹣c2=3,

所以椭圆的方程是 + =1;

(Ⅱ)若∠APO=∠BPO,则kPA+kPB=0,

设A(x1,kx1+1),B(x2,kx2+1),

联立 ,消去y得到(3+4k2)x2+8kx﹣8=0,

即﹣16k﹣32k2﹣8k+24+32k2=0,

∴k=1


【解析】(Ⅰ)求出抛物线的焦点,可得椭圆的焦点,由椭圆的定义,运用两点的距离公式可得2a=4,即a=2,再由a,b,c的关系,可得b,进而得到椭圆方程;(Ⅱ)若∠APO=∠BPO,则kPA+kPB=0,设A(x1,kx1+1),B(x2,kx2+1),运用直线的斜率公式,联立直线方程和椭圆方程,运用韦达定理,化简整理可得k的方程,解方程即可得到k的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ax3﹣x2+x在区间(0,2)上是单调增函数,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体 中,四边形 是边长为 的正方形, 平面 .

(1)求证: 平面
(2)求直线 与平面 所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 表示两条不同的直线, 表示一个平面,给出下列四个命题:
;②
;④ .
其中正确命题的序号是( )
A.①②
B.②③
C.②④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是偶函数.
(1)求 的值;
(2)若函数 没有零点,求 得取值范围;
(3)若函数 的最小值为0,求实数 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥 中,底面 是边长为1的正方形,侧棱 底面 ,且 是侧棱 上的动点.

(1)求四棱锥 的表面积;
(2)是否在棱 上存在一点 ,使得 平面 ;若存在,指出点 的位置,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用斜二测画法画出图中水平放置的△OAB的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某圆拱桥的示意图如图所示该圆拱的跨度AB36 m拱高OP6 m在建造时每隔3 m需用一个支柱支撑求支柱A2P2的长(精确到0.01 m)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的三个顶点分别为A(0,4)、B(-2,6)、C(-8,0).

(1)分别求边ACAB所在直线的方程;

(2)求AC边上的中线BD所在直线的方程;

(3)求AC边的中垂线所在直线的方程;

(4)求AC边上的高所在直线的方程;

(5)求经过两边ABAC的中点的直线方程.

查看答案和解析>>

同步练习册答案