精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC中,D为边AC上一点,BC=2 ,∠DBC=45°.
(1)若CD=2 ,求△BCD的面积;
(2)若角C为锐角,AB=6 ,sinA= ,求CD的长.

【答案】
(1)解:在△BCD中,由余弦定理:CD2=BC2+BD2﹣2BCBDcos45°,

即20=8+BD2﹣4BD,

解得BD=6,

所以S△BCD= BDBCsin45°= ×6×2 × =6


(2)解:由正弦定理可得: = ,即 =

解得sinC=

由角C为锐角得cosC=

∴sin∠BDC=sin(C+45°)=

在△BCD中,由正弦定理得: =

=

解得CD=


【解析】(1)根据余弦定理求出BD,再根据三角形的面积公式计算即可,(2)根据正弦定理即可求出sin∠BDC=sin(C+45°)= ,再由正弦定理可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆E:mx2+y2=1(m>0).
(Ⅰ)若椭圆E的右焦点坐标为 ,求m的值;
(Ⅱ)由椭圆E上不同三点构成的三角形称为椭圆的内接三角形.若以B(0,1)为直角顶点的椭圆E的内接等腰直角三角形恰有三个,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ()是偶函数,当时,

(1) 求的解析式;

(2) 若不等式时都成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解,则实数a的取值范围是(
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos x的图象向右平移π个单位得到函数y=g(x)的图象,则g( )=(
A.
B.
C.﹣
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二分法是求方程近似解的一种方法,其原理是“一分为二、无限逼近”.执行如图所示的程序框图,若输入x1=1,x2=2,d=0.01则输出n的值(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当今信息时代,众多中小学生也配上了手机.某机构为研究经常使用手机是否对学习成绩有影响,在某校高三年级50名理科生第人的10次数学考成绩中随机抽取一次成绩,用茎叶图表示如图:
(1)根据茎叶图中的数据完成下面的2×2列联表,并判断是否有95%的把握认为经常使用手机对学习成绩有影响?

及格(60及60以上)

不及格

合计

很少使用手机

经常使用手机

合计


(2)从50人中,选取一名很少使用手机的同学(记为甲)和一名经常使用手机的同学(记为乙)解一道函数题,甲、乙独立解决此题的概率分别为P1 , P2 , P2=0.4,若P1﹣P2≥0.3,则此二人适合为学习上互帮互助的“对子”,记X为两人中解决此题的人数,若E(X)=1.12,问两人是否适合结为“对子”? 参考公式及数据: ,其中n=a+b+c+d

P(K2≥k0

0.10

0.05

0.025

k0

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下茎叶图记录了甲、乙两个篮球队在3次不同比赛中的得分情况.乙队记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以m表示.那么在3次比赛中,乙队平均得分超过甲队平均得分的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( x3﹣x2+ )cos2017 + )+2x+3在[﹣2015,2017]上的最大值为M,最小值为m,则M+m=(
A.5
B.10
C.1
D.0

查看答案和解析>>

同步练习册答案