精英家教网 > 高中数学 > 题目详情

【题目】已知在平面直角坐标系xOy中,直线l的参数方程为t为参数),曲线的方程为.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.

1)求直线l和曲线的极坐标方程;

2)曲线分别交直线l和曲线于点AB,求的最大值及相应的值.

【答案】(1)直线的极坐标方程为:;曲线的极坐标方程为:(2) 时,,的最大值为.

【解析】

(1)参数方程化为普通方程,只要消去参数方程中的参数即可;极坐标方程化为普通方程,只要利用极坐标与直角坐标的函数关系转换即可;

(2)设出点的极坐标,结合极坐标的几何意义与三角函数求最值的知识,即可求解.

(1)由题意,直线的直角坐标方程为:

直线的极坐标方程为:

曲线的直角坐标方程:

曲线的极坐标方程为:.

(2)由题意设:

(1)

,即时,,

此时取最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点.

1)求的取值范围;

2)记的极值点为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为为其左、右顶点,为椭圆上除外任意一点,若记直线的斜率分别为

1)求证:为定值;

2)若椭圆的长轴长为,过点作两条互相垂直的直线,,若恰好为与椭圆相交的弦的中点,设与椭圆相交的弦的中点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点,离心率为是平面内两点,满足,线段的中点在椭圆上,周长为12.

1)求椭圆的方程;

2)若与圆相切的直线与椭圆交于,求(其中为坐标原点)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的左、右顶点分别为AB,左焦点为FO为原点,点P为椭圆C上不同于AB的任一点,若直线PAPB的斜率之积为,且椭圆C经过点.

1)求椭圆C的方程;

2)若P点不在坐标轴上,直线PAPBy轴于MN两点,若直线OT与过点MN的圆G相切.切点为T,问切线长是否为定值,若是,求出定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】勒洛三角形是具有类似圆的定宽性的曲线,它是由德国机械工程专家、机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.如图中的两个勒洛三角形,它们所对应的等边三角形的边长比为,若从大的勒洛三角形中随机取一点,则此点取自小勒洛三角形内的概率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若方程有四个不等实根,时,不等式恒成立,则实数的最小值为()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如图:

表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图:

如果把5根算筹以适当的方式全部放入 下面的表格中,那么可以表示的三位数的个数为( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线y=a分别与直线y=2x-3,曲线y=ex-xx≥0)交于点AB,则|AB|的最小值为(  )

A. B. C. eD.

查看答案和解析>>

同步练习册答案