精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)满足?x∈R,f(x)=f(2-x)且f(x)在区间[1,+∞)上单调递增,则满足$f(2x)<f(\frac{1}{3})$的x的取值范围是(  )
A.$(\frac{1}{5},\frac{5}{6})$B.$[\frac{1}{5},\frac{5}{6})$C.$(\frac{1}{6},\frac{5}{6})$D.$[\frac{1}{6},\frac{5}{6})$

分析 由题意可知函数f(x)的图象关于直线x=1对称,再结合单调性可知|2x-1|<|$\frac{1}{3}$-1|,从而解得.

解答 解:∵f(x)=f(2-x),
∴函数f(x)的图象关于直线x=1对称,
∵f(x)在区间[1,+∞)上单调递增,
∴函数f(x)的图象开口向上,
∵$f(2x)<f(\frac{1}{3})$,
∴|2x-1|<|$\frac{1}{3}$-1|,
解得,$\frac{1}{6}$<x<$\frac{5}{6}$,
故选C.

点评 本题考查了函数的性质的判断与应用,同时考查了函数的单调性在解不等式时的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在三棱锥S-ABC中,SA⊥平面ABC,SA=4,底面△ABC是边长为3的正三角形,则三棱锥S-ABC的外接球的表面积为(  )
A.19πB.28πC.43πD.76π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的是(  )
A.-1∈NB.$\sqrt{2}$∈QC.π∉RD.∅⊆Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若幂函数f(x)过点(2,8),则满足不等式f(2-a)>f(1-a)的实数a的取值范围是a∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-ax,(a>0),$g(x)=sinxsin({x+\frac{π}{6}})-\frac{{\sqrt{3}}}{4}$,命题p:an=f(n)是递增数列,命题q:g(x)在(a,π)上有且仅有2条对称轴.
①求g(x)的周期和单调递增区间;
②若p∧q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设向量$\overrightarrow{a}$=(2cosx,-2sinx),$\overrightarrow{b}$=$(3cosx,\sqrt{3}cosx)$,f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求函数f(x)的单调增区间和图象的对称中心坐标;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且f(C)=0,c=1,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A,B,C的对边分别为a,b,c.若c=4,sinC=2sinA,sinB=$\frac{\sqrt{15}}{4}$,则a=2,S△ABC=$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四边形ABCD中,AB=8,BC=3,CD=5,∠A=$\frac{π}{3}$,cos∠ADB=$\frac{1}{7}$.
(Ⅰ)求BD的长;
(Ⅱ)求△BCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知tanα<0,cosα<0.
(1)求角α的集合;
(2)求角$\frac{α}{2}$的终边所在的象限;
(3)试判断sin$\frac{α}{2}$cos$\frac{α}{2}$,tan$\frac{α}{2}$的符号.

查看答案和解析>>

同步练习册答案