分析 先确定直线m,n恒过定点M(0,1),圆心O(0,0),半径R=2,AC2+BD2为定值,表示出面积,即可求四边形ABCD的面积的最大值和最小值.
解答 解:由题意可得,直线m,n恒过定点M(0,1),圆心O(0,0),半径R=2,
设弦AC,BD的中点分别为E,F,则OE2+OF2=OM2=1,
∴AC2+BD2=4(8-OE2-OF2)=28,
∴S2≤$\frac{1}{4}$AC2•BD2=$\frac{1}{4}$AC2•(28-AC2)≤$\frac{1}{4}•(\frac{A{C}^{2}+28-A{C}^{2}}{2})^{2}$=49,
∴S≤7,当且仅当AC2=28-AC2,即AC=$\sqrt{14}$时,取等号,
故四边形ABCD面积S的最大值为7.
故答案为:7.
点评 本题主要考查直线过定点,考查面积的计算,基本不等式的应用,正确运用代入法是解题的关键,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,2) | B. | (1,3] | C. | (1,$\frac{3}{2}$) | D. | (1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com