精英家教网 > 高中数学 > 题目详情
4.已知椭圆具有性质:若M、N是椭圆上关于原点对称的两个点,点P是椭圆上的任意一点,当直线PM、PN的斜率都存在,并记为kPM,kPN时,那么kPM与kPN之积是与P点无关的定值.现将椭圆改为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),且kPM<0、kPN<0,则kPM+kPN的最大值为(  )
A.$-\frac{2b}{a}$B.$-\frac{2a}{b}$C.$-\frac{{\sqrt{2}b}}{a}$D.$-\frac{{\sqrt{2}b}}{a}$

分析 设点M的坐标为(m,n),则点N的坐标为(-m,-n),且$\frac{{m}^{2}}{{a}^{2}}-\frac{{n}^{2}}{{b}^{2}}$=1,又设点P的坐标为(x,y),表示出直线PM和PN的斜率,求得两直线斜率乘积的表达式,把y和x的表达式代入发现结果与p无关,再利用基本不等式,即可得出结论.

解答 解:双曲线的类似的性质为:若M,N是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1上关于原点对称的两个点,点P是双曲线上的任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,kPM与kPN之积是与点P位置无关的定值.
下面给出证明:
设点M的坐标为(m,n),则点N的坐标为(-m,-n),且$\frac{{m}^{2}}{{a}^{2}}-\frac{{n}^{2}}{{b}^{2}}$=1.
又设点P的坐标为(x,y),由kPM=$\frac{y-n}{x-m}$,kPN=$\frac{y+n}{x+m}$得kPM•kPN=$\frac{{y}^{2}-{n}^{2}}{{x}^{2}-{m}^{2}}$,①
将y2=$\frac{{b}^{2}}{{a}^{2}}$x2-b2,n2=$\frac{{b}^{2}}{{a}^{2}}$m2-b2代入①式,得kPM•kPN=$\frac{{b}^{2}}{{a}^{2}}$(定值).
kPM<0、kPN<0,
∴kPM+kPN=-(-kPM-kPN)≤-$\frac{2b}{a}$,
∴kPM+kPN的最大值为-$\frac{2b}{a}$,
故选:A.

点评 本题主要考查了双曲线的性质,考查了学生综合分析问题和解决问题的能力,正确计算是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若函数满足f(x)=-f(x+2),则与f(100)一定相等的是(  )
A.f(1)B.f(2)C.f(3)D.f(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=x3+3ax2+bx+a2(a>1)在x=-1时有极值0.
(1)求常数 a,b的值;  
(2)求f(x)的单调区间.
(3)方程f(x)=c在区间[-4,0]上有三个不同的实根时实数c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,半径为2的圆圆心的初始位置坐标为(0,2),圆上一点A坐标为(0,0).圆沿x轴正向滚动,当圆滚动到圆心位于(4,2)时,A点坐标为(4-2sin2,2-2cos2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设$\overrightarrow a,\overrightarrow b,\overrightarrow c$为单位向量,$\overrightarrow a,\overrightarrow b$的夹角为60°,则$(\overrightarrow a+\overrightarrow b+\overrightarrow c)•\overrightarrow c$的最大值为1+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{m}$=($\sqrt{3}$sinωx,1+cosωx),$\overrightarrow{n}$=(cosωx,1-cosωx),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中ω>0,若f(x)的一条对称轴离最近的对称中心的距离为$\frac{π}{4}$.
(1)求f(x)的对称中心;
(2)若g(x)=f(x)+m在区间[0,$\frac{π}{2}$]上存在两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号).若假设第1组抽出的号码为3,则第5组中用抽签方法确定的号码是35.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.正方体ABCD-A1B1C1D1中,求证:直线AC1⊥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.从区间[0,1]内任取两个数,则这两个数的和小于$\frac{5}{4}$的概率为$\frac{23}{32}$.

查看答案和解析>>

同步练习册答案