精英家教网 > 高中数学 > 题目详情

【题目】已知圆与圆,点在圆上,点在圆上.

(1)求的最小值;

(2)直线上是否存在点,满足经过点由无数对相互垂直的直线,它们分别与圆和圆相交,并且直线被圆所截得的弦长等于直线被圆所截得的弦长?若存在,求出点的坐标;若不存在,请说明理由.

【答案】(1);(2)存在点满足题意

【解析】试题分析:(1)根据圆的几何条件可得为两圆心连线与两圆交点时最小,再根据两点间距离公式计算结果(2)两弦长相等转化为对应圆心距相等,根据点到直线距离公式展开得关于斜率k的恒等式,再根据恒等式成立的条件解出点坐标

试题解析:(1)为两圆心连线与两圆交点时最小,此时

(2)设,斜率不存在时不符合题意,舍去;斜率存在时,则

由题意可知,两弦长相等也就是相等即可,故,化简得: 对任意恒成立,故,解得,故存在点满足题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高三共有800名学生,为了解学生3月月考生物测试情况,根据男女学生人数差异较大,从中随机抽取了200名学生,记录他们的分数,并整理得如图频率分布直方图.

(1)若成绩不低于60分的为及格,成绩不低于80分的为优秀,试估计总体中合格的有多少人?优秀的有多少人?

(2)已知样本中有一半的女生分数不小于80,且样本中不低于80分的男女生人数之比2:3,试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为菱形,四边形为平行四边形,设相交于点

1)证明:平面平面

2)若与平面所成角为60°,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2≥1}, ,则A∩(RB)=(
A.(2,+∞)
B.(﹣∞,﹣1]∪(2,+∞)
C.(﹣∞,﹣1)∪(2,+∞)
D.[﹣1,0]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,底面为矩形, .点在棱上,平面与棱交于点

(Ⅰ)求证:

(Ⅱ)求证:平面平面

(Ⅲ)若 ,平面平面,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对边分别为a,b,c且acosC,bcosB,ccosA成等差数列.
(1)求B的值;
(2)求2sin2A﹣1+cos(A﹣C)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取了40辆汽车在经过路段上某点时的车速(km/h),现将其分成六段: ,后得到如图所示的频率分布直方图.

(Ⅰ)现有某汽车途经该点,则其速度低于80km/h的概率约是多少?

(Ⅱ)根据直方图可知,抽取的40辆汽车经过该点的平均速度约是多少?

(Ⅲ)在抽取的40辆且速度在(km/h)内的汽车中任取2辆,求这2辆车车速都在(km/h)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市某机构为调查2017年下半年落实中学生“阳光体育”活动的情况,设平均每人每天参加体育锻炼时间为(单位:分钟),按锻炼时间分下列四种情况统计:①0~10分钟;②11~20分钟;③21~30分钟;④30分钟以上,有10000名中学生参加了此项活动,图1是此次调查中某一项的流程图,其输出的结果是6400,则平均每天参加体育锻炼时间在0~20分钟内的学生的频率是( )

1

A. 0.64 B. 0.36 C. 6400 D. 3600

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an﹣3.
(1)求数列{an}的通项公式;
(2)已知bn=2n , 求Tn=a1b1+a2b2+…+anbn的值.

查看答案和解析>>

同步练习册答案