分析 (1)由S6≠2S3,可得q≠1,由S3=$\frac{7}{2}$,S6=$\frac{63}{2}$.利用等比数列的前n项和公式可得$\left\{\begin{array}{l}{\frac{{a}_{1}(1-{q}^{3})}{1-q}=\frac{7}{2}}\\{\frac{{a}_{1}(1-{q}^{6})}{1-q}=\frac{63}{2}}\end{array}\right.$,解得q,a1.即可得出.
(2)利用等比数列的前n项和公式即可得出.
解答 解:(1)∵S6≠2S3,∴q≠1,
∵S3=$\frac{7}{2}$,S6=$\frac{63}{2}$.
∴$\left\{\begin{array}{l}{\frac{{a}_{1}(1-{q}^{3})}{1-q}=\frac{7}{2}}\\{\frac{{a}_{1}(1-{q}^{6})}{1-q}=\frac{63}{2}}\end{array}\right.$,解得q=2,a1=$\frac{1}{2}$.
∴an=$\frac{1}{2}×{2}^{n-1}$=2n-2.
(2)S8=$\frac{\frac{1}{2}({2}^{8}-1)}{2-1}$=$\frac{255}{2}$.
点评 本题考查了等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (2014,+∞) | B. | (-∞,0)∪(2014,+∞) | C. | (-∞,0)∪(0,+∞) | D. | (-∞,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com