分析 由题意,检验a=0是否满足条件,当a≠0 时,需满足$\left\{\begin{array}{l}{a>0}\\{△={a}^{2}-4a(a+3)<0}\end{array}\right.$,从而解出实数a的取值范围.
解答 解:因为ax2+ax+a+3>0对一切实数x恒成立,
所以当a=0时,不等式为3>0,满足题意;
当a≠0,需满足$\left\{\begin{array}{l}{a>0}\\{△={a}^{2}-4a(a+3)<0}\end{array}\right.$,解得a>0
总之a≥0
故答案为:[0,+∞).
点评 本题考查一元二次不等式的应用,注意联系对应的二次函数的图象特征,体现了等价转化和分类讨论的数学思想.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,0) | B. | (0,1) | C. | (-∞,0)∪(0,1) | D. | (0,1)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2n-1 | B. | 2n+1 | C. | 2n+1-1 | D. | 2n-1+2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com