精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中的零点:且恒成立,在区间上有最小值无最大值,则的最大值是(

A. 11B. 13C. 15D. 17

【答案】C

【解析】

先根据xyfx)图象的对称轴,fx)的零点,判断ω为正奇数,再结合fx)在区间上单调,求得ω的范围,对选项检验即可.

由题意知函数 yfx)图象的对称轴,fx)的零点,∴nZ,∴ω2n+1

fx)在区间上有最小值无最大值,∴周期T,即,∴ω≤16

∴要求的最大值,结合选项,先检验ω15

ω15时,由题意可得15+φkπφ,函数为yfx)=sin15x),

在区间上,15x∈(),此时fx)在时取得最小值,∴ω=15满足题意.

ω的最大值为15

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】石嘴山市第三中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:

1)根据茎叶图求甲乙两位同学成绩的中位数,并将同学乙的成绩的频率分布直方图填充完整;

(2)根据茎叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可);

(3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,记事件为“其中2个成绩分别属于不同的同学”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表:

同意

不同意

合计

男生

a

5

女生

40

d

合计

100

(1)求 ad 的值;

(2)根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;

附:

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名大学生因为学习需要,欲各自选购一台笔记本电脑,他们决定在ABC三个品牌的五款产品中选择,这五款笔记本电脑在某电商平台的价格与销量数据如表所示:

品牌

A

B

C

型号

A1

A2

B1

B2

C1

价格(元)

6000

7500

10000

8000

4500

销量(台)

1000

1000

200

800

3000

(Ⅰ)若甲选择某品牌的笔记本电脑的概率与该品牌的总销量成正比,求他选择B品牌的笔记本电脑的概率;

(Ⅱ)若甲、乙两人选择每种型号的笔记本电脑的概率都相等,且两人选购的型号不相同,求他们两人购买的笔记本电脑的价格之和大于15000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ax2+ax1aR).

)当a1时,求fx)>0的解集;

)对于任意xR,不等式fx)<0恒成立,求a的取值范围;

)求关于x的不等式fx)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:①若线性回归方程为,则当变量增加一个单位时,一定增加3个单位;②将一组数据中的每个数据都加上同一个常数后,方差不会改变;③线性回归直线方程必过点;④抽签法属于简单随机抽样;其中错误的说法是(

A.①③B.②③④C.D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有4个编号依次为1、2、3、4的球,这4个球除号码外完全相同,先从盒子中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为

(Ⅰ)列出所有可能结果;

(Ⅱ)求事件“取出球的号码之和小于4”及事件 “编号”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二理科8班共有50名学生参加学业水平模拟考试,成绩(单位:分,满分100分)大于或等于90分的为优秀,其中语文成绩近似服从正态分布,数学成绩的频率分布直方图如图.

(I)这50名学生中本次考试语文、数学成绩优秀的大约各有多少人?

(Ⅱ)如果语文和数学两科成绩都优秀的共有4人,从语文优秀或数学优秀的这些同学中随机抽取3人,设3人中两科都优秀的有人,求的分布列和数学期望;

(Ⅲ)根据(I)(Ⅱ)的数据,是否有99%以上的把握认为语文成绩优秀的同学,数学成绩也优秀?

附:①若~,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上,分别为椭圆的上、下顶点,点.

(1)求椭圆的方程;

(2)若直线与椭圆的另一交点分别为,证明:直线过定点.

查看答案和解析>>

同步练习册答案