【题目】如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.
(1)求证:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值;
(3)求点C到平面的距离.
【答案】(1)见解析;(2);(3).
【解析】试题分析:(1)第(1)问,直接转化成平面ABC⊥平面AA1C1C. (2)利用空间向量法求二面角A1-BC1-B1的余弦值. (3)利用空间向量法求点C到平面的距离.
试题解析:
证明:(1)因为为正方形,所以.
因为平面ABC⊥平面AA1C1C,且平面ABC平面AA1C1C ,所以⊥平面ABC.
(2)由(1)知, ⊥AC, ⊥AB.
由题意知,所以.
如图,以A为原点建立空间直角坐标系,则.
设平面的法向量为,则即
令,则,所以.
同理可得,平面的法向量为.
所以.
由题知二面角A1-BC1-B1为锐角,所以二面角A1-BC1-B1的余弦值为.
(3)由(2)知平面的法向量为,
所以点C到平面距离.
科目:高中数学 来源: 题型:
【题目】如图,一隧道内设双行线路,其截面由一长方形和一抛物线构成。为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部(抛物线)在竖直方向上的高度之差至少为0.5m,若行车道总宽度AB为6m,请计算通过隧道的车辆的限制高度(精确度为0.1m)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距为,椭圆上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线 与椭圆交于两点,点(0,1),且=,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点在椭圆上,直线与x,y轴分别交于A,B两点,0为坐标原点,且△OAB 的面积的最小值为
(1)求椭圆的离心率;
(2) 设点C、D、F2分别为椭圆的上、下顶点以及右焦点,E 为线段OD 的中点,直线F2E 与椭圆 相交于M、N 两点,若,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示,甲的成绩中有一个数的个位数字模糊,在茎叶图中用表示.(把频率当作概率).
(1)假设,现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?
(2)假设数字的取值是随机的,求乙的平均分高于甲的平均分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为奇函数, 为常数.
(1)确定的值;
(2)求证: 是上的增函数;
(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把单位正方体的六个面分别染上6种颜色,并画上个数不同的金鸡,各面的颜色与鸡的个数对应如表:
面上所染颜色 | 红 | 黄 | 蓝 | 青 | 紫 | 绿 |
该面上的金鸡个数 | 1 | 2 | 3 | 4 | 5 | 6 |
取同样的4个上述的单位正方体拼成一个如图所示的水平放置的长方体.则这个长方体的下底面总计画有______个金鸡
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xoy中,抛物线y2=2px(p>0)的准线l与x轴交于点M,过点M的直线与抛物线交于A,B两点,设A(x1 , y1)到准线l的距离d=2λp(λ>0)
(1)若y1=d=3,求抛物线的标准方程;
(2)若 +λ = ,求证:直线AB的斜率的平方为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com