精英家教网 > 高中数学 > 题目详情
如图,在平行四边形ABCD中,AB=2BC=4,∠ABC=120°,E、M分别为AB、DE的中点,将△ADE沿直线DE翻转成△A′DE,A′C=4.求证:平面A′DE⊥平面BCD.
分析:依题意,可知△A′DE为等边三角形,连接CE,只需证明CE⊥A′E且CE⊥DE即可.
解答:证明:∵平行四边形ABCD中,AB=2BC=4,∠ABC=120°,
∴∠DAB=60°,E为AB的中点,
∴△ADE为等边三角形,
∴DE=2.

连接CE,∠ABC=120°,BE=BC=2,
由余弦定理得CE2=BE2+CB2-2BE•BCcos∠ABC=4+4-2×2×2×(-
1
2
)=12,
在△A′EC中,A′E=AE=2,A′C=4,CE=2
3
,满足A′C2=CE2+A′E2
∴CE⊥A′E;
在△CDE中,同理可证CE⊥DE;
∵A′E∩DE=E,
∴CE⊥平面A′DE,又CE?平面BCD,
∴平面A′DE⊥平面BCD.
点评:本题考查平面与平面垂直的判定,证明CE⊥平面A′DE,是关键,也是难点,考查余弦定理与勾股定理的应用,考查线面垂直的判定,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,下列结论中错误的是(  )
A、
AB
=
DC
B、
AD
+
AB
=
AC
C、
AB
-
AD
=
BD
D、
AD
+
CB
=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD,
AD
=a
AB
=b
,M为AB的中点,点N在DB上,且
DN
=t
NB

(1)当t=2时,证明:M、N、C三点共线;
(2)若M、N、C三点共线,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,
AB
=
a
AD
=
b
AN
=3
NC
,则
BN
=
-
1
4
a
+
3
4
b
-
1
4
a
+
3
4
b
(用
a
b
表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,若
OA
=
a
OB
=
b
则下列各表述是正确的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形OABC中,点O是原点,点A和点C的坐标分别是(3,0)、(1,3),点D是线段AB上的中点.
(1)求AB所在直线的一般式方程;
(2)求直线CD与直线AB所成夹角的余弦值.

查看答案和解析>>

同步练习册答案