精英家教网 > 高中数学 > 题目详情

已知椭圆方程为,左、右焦点分别是,若椭圆上的点的距离和等于
(Ⅰ)写出椭圆的方程和焦点坐标;
(Ⅱ)设点是椭圆的动点,求线段中点的轨迹方程;
(Ⅲ)直线过定点,且与椭圆交于不同的两点,若为锐角(为坐标原点),求直线的斜率的取值范围.

(Ⅰ)椭圆的方程,焦点
(Ⅱ)(Ⅲ)

解析试题分析:(Ⅰ)由题意得:
又点椭圆上,∴
∴ 椭圆的方程,焦点.                      ……5分
(Ⅱ)设椭圆上的动点,线段中点
由题意得:
代入椭圆的方程得,
为线段中点的轨迹方程.                          ……9分
(Ⅲ)由题意得直线的斜率存在且不为
代入整理,
得 
   ①
,∴ 
为锐角,即
又 
∴ 

, ∴ . ②
由①、②得 ,∴的取值范围是.               ……14分
考点:本小题注意考查椭圆标准方程的求解,直线与椭圆的位置关系等.
点评:圆锥曲线的综合问题一般离不开直线方程和圆锥曲线方程联立方程组,运算量较大,注意到联立得到直线方程后,不要忘记验证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的离心率,过点的直线与原点的距离为。⑴求椭圆的方程;⑵已知定点,若直线与椭圆交于两点,问:是否存在的值,使以为直径的圆过点?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知椭圆中心在原点,焦点在x轴上,离心率,过椭圆的右焦点且垂直于长轴的弦长为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线与椭圆相交于两点,且坐标原点到直线的距离为的大小是否为定值?若是求出该定值,不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知直线L:y=x+1与曲线C:交于不同的两点A,B;O为坐标原点。
(1)若,试探究在曲线C上仅存在几个点到直线L的距离恰为?并说明理由;
(2)若,且a>b,,试求曲线C的离心率e的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题13分)设椭圆的左右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且的中点.

(1)求椭圆的离心率;
(2)若过点的圆恰好与直线相切,求椭圆的方程;
(3)在(2)的条件下过右焦点作斜率为的直线与椭圆相交于两点,在轴上是否存在点使得以为邻边的平行四边形为菱形,如果存在,求出的取值范围,如果不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线轴上的截距m的取值范围;
(ⅱ)求证直线MAMBx轴围成的三角形总是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,且过点为其右焦点.
(1)求椭圆的方程;
(2)设过点的直线与椭圆相交于两点(点两点之间),若的面积相等,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线所围成的封闭图形的面积为,曲线的内切圆半径为.记为以曲线与坐标轴的交点为顶点的椭圆.
(1)求椭圆的标准方程;
(2)设是过椭圆中心的任意弦,是线段的垂直平分线.上异于椭圆中心的点.
(i)若为坐标原点),当点在椭圆上运动时,求点的轨迹方程;
(ii)若与椭圆的交点,求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,斜率为1的直线过抛物线的焦点F,与抛物线交于两点A,B,

(1)若|AB|=8,求抛物线的方程;
(2)设C为抛物线弧AB上的动点(不包括A,B两点),求的面积S的最大值;
(3)设P是抛物线上异于A,B的任意一点,直线PA,PB分别交抛物线的准线于M,N两点,证明M,N两点的纵坐标之积为定值(仅与p有关)

查看答案和解析>>

同步练习册答案