精英家教网 > 高中数学 > 题目详情
9.$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-3,5),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为$\frac{9\sqrt{34}}{34}$.

分析 由已知向量的坐标求出$\overrightarrow{a}•\overrightarrow{b}$与$|\overrightarrow{b}|$,代入投影公式得答案.

解答 解:∵$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-3,5),
∴$\overrightarrow{a}•\overrightarrow{b}=2×(-3)+3×5=9$,
$|\overrightarrow{b}|=\sqrt{(-3)^{2}+{5}^{2}}=\sqrt{34}$,
则$|\overrightarrow{a}|cos<\overrightarrow{a},\overrightarrow{b}>$=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}=\frac{9}{\sqrt{34}}=\frac{9\sqrt{34}}{34}$.
故答案为:$\frac{9\sqrt{34}}{34}$.

点评 本题考查平面向量的数量积运算,考查了向量在向量方向上的投影的概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知椭圆C的两个焦点分别为F1(-$\sqrt{10}$,0),F2($\sqrt{10}$,0),且椭圆C过点P(3,2).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)与直线OP平行的直线交椭圆C于A,B两点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,两个变量具有相关关系的图是(  )
A.(1)(2)B.(1)(3)C.(2)(4)D.(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C对边分别是a、b、c,且满足2$\overrightarrow{AB}$•$\overrightarrow{AC}$=a2-(b-c)2
(Ⅰ)求角A的大小;
(Ⅱ)若a=4$\sqrt{3}$,△ABC的面积为4$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点$(\sqrt{2},\sqrt{3})$在双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上,且C的焦距为4,则它的离心率为(  )
A.2B.4C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC的内角A,B,C的对边分别为a,b,c,且满足$cosA=\frac{3}{5}$,$\overrightarrow{AB}•\overrightarrow{AC}=3$.则△ABC的面积2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2-10x+9=0 的两根,则S5=121.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=ax2-2ax+a+$\frac{1}{3}$(a>0),g(x)=bx3-2bx2+bx-$\frac{4}{27}$(b>1),则y=g[f(x)]的零点个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图直角梯形OADC中,OA∥CD,∠D=60°,OA=1,CD=2,在梯形内挖去一个以OA为半径的四分之一圆,图中阴影部分绕OC所在直线旋转一周,求该旋转体的体积和表面积.

查看答案和解析>>

同步练习册答案