精英家教网 > 高中数学 > 题目详情
已知向量,函数的图象一个对称中心与它相邻的一条对称轴之间的距离为1,且其图象过点
(1)求f(x)的解析式;
(2)当x∈[-1,1]时,求f(x)的单调区间.
【答案】分析:(1)由已知中向量,函数,我们根据向量数量积的运算公式,及二倍角公式,结合图象一个对称中心与它相邻的一条对称轴之间的距离为1,且其图象过点.求出ω,φ,得到函数的解析式.
(2)根据(1)的函数的解析式,根据正弦型函数的单调性,结合x∈[-1,1],可以得到f(x)的单调区间.
解答:解:(1)
=sin2(wx+y)+4-1-cos2(wx+φ)=3-cos(2wx+2φ)(2分)
依题知:∴T=4

又过点
(4分)
(6分)
(2)当x∈[-1,1]时,

f(x)单减(9分)
同样当时f(x)单增(12分)
点评:本题考查的知识点正弦型函数解析式的求法,正弦型函数的单调性,其中根据已知条件,求出函数的周期,最值,向左平移量,特殊点坐标等,进而求出正弦型函数的解析式是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012年高考(湖北理))已知向量,,设函数的图象关于直线对称,其中,为常数,且.

(Ⅰ)求函数的最小正周期;

(Ⅱ)若的图象经过点,求函数在区间上的取值范围.

查看答案和解析>>

科目:高中数学 来源:2015届湖南省高一6月阶段性考试理科数学试卷(解析版) 题型:解答题

已知向量,函数的图象的两相邻对称轴间的距离为.

(1)求的值;

(2)若,求的值;

(3)若,且有且仅有一个实根,求实数的值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省温州市十校联合体高一(下)期中数学试卷(解析版) 题型:解答题

已知向量,函数的图象的两相邻对称轴间的距离为
(1)求ω;
(2)若时,求函数f(x)的单调递增区间;
(3)若,且f(x)=m有且仅有一个实根,求实数m的值.

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高一下学期期末考试数学试卷(解析版) 题型:解答题

已知向量,函数的图象的两相邻对称轴间的距离为.

(1)求的值;

(2)若,求的值;

(3)若,且有且仅有一个实根,求实数的值.

 

查看答案和解析>>

同步练习册答案