精英家教网 > 高中数学 > 题目详情

【题目】为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为 = x+ ,已知 xi=225, yi=1600, =4,该班某学生的脚长为24,据此估计其身高为(  )
A.160
B.163
C.166
D.170

【答案】C
【解析】解:由线性回归方程为 =4x+
= xi=22.5, = yi=160,
则数据的样本中心点(22.5,160),
由回归直线经过样本中心点,则 = ﹣4x=160﹣4×22.5=70,
∴回归直线方程为 =4x+70,
当x=24时, =4×24+70=166,
则估计其身高为166,
故选C.
由数据求得样本中心点,由回归直线方程必过样本中心点,代入即可求得 ,将x=24代入回归直线方程即可估计其身高.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题错误的是 ( )

A. 如果平面平面,那么平面内一定存在直线平行于平面

B. 如果平面不垂直平面,那么平面内一定不存在直线垂直于平面

C. 如果平面平面,平面平面,且,那么

D. 如果平面平面,那么平面内所有直线都垂直于平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=的值域是[0,+∞),则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={(x,y)|f(x,y)=0},若对任意P1(x1 , y1)∈M,均不存在P2(x2 , y2)∈M使得x1x2+y1y2=0成立,则称集合M为“好集合”,下列集合为“好集合”的是(  )
A.M={(x,y)|y﹣lnx=0}
B.M={(x,y)|y﹣x2﹣1=0}
C.M={(x,y)|(x﹣2)2+y2﹣2=0}
D.M={(x,y)|x2﹣2y2﹣1=0}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x|},B={x|log2(x﹣2)<1},则(UA)∩B=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的导函数yf '(x)的图象如图所示, 其中-3,2,4是f '(x)=0的根, 现给出下列命题:

(1) f(4)是f(x)的极小值;

(2) f(2)是f(x)极大值;

(3) f(-2)是f(x)极大值;

(4) f(3)是f(x)极小值;

(5) f(-3)是f(x)极大值.

其中正确的命题是 ________________.(填上正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是 的中点.(12分)
(Ⅰ)设P是 上的一点,且AP⊥BE,求∠CBP的大小;
(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂有容量300吨的水塔一个,每天从早六点到晚十点供应生活和生产用水,已知:该厂生活用水每小时10吨,工业用水总量W(吨)与时间t(单位:小时,规定早晨六点时t=0)的函数关系为W=100 ,水塔的进水量有10级,第一级每小时水10吨,以后每提高一级,进水量增加10吨.若某天水塔原有水100吨,在供应同时打开进水管.问该天进水量应选择几级,既能保证该厂用水(即水塔中水不空),又不会使水溢出?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+bex﹣2asinx(a,b∈R).
(1)当a=0时,讨论函数f(x)的单调区间;
(2)当b=﹣1时,若f(x)>0对任意x∈(0,π)恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案