【题目】如图,正三棱锥A﹣BCD的侧棱长为2,底面BCD的边长为2 ,E,分别为BC,BD的中点,则三棱锥A﹣BEF的外接球的半径R= , 内切球半径r= .
科目:高中数学 来源: 题型:
【题目】某同学在利用“五点法”作函数f(x)=Asin(ωx+)+t(其中A>0, )的图象时,列出了如表格中的部分数据.
x |
|
|
| ||
ωx+ | 0 |
| π |
| 2π |
f(x) | 2 | 6 | 2 | ﹣2 | 2 |
(1)请将表格补充完整,并写出f(x)的解析式.
(2)若 ,求f(x)的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x+x2 .
(1)求x<0时,f(x)的解析式;
(2)问是否存在这样的非负数a,b,当x∈[a,b]时,f(x)的值域为[4a﹣2,6b﹣6]?若存在,求出所有的a,b值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a、b、c分别是△ABC的三个内角A、B、C的对边.
(1)若△ABC面积S△ABC= ,c=2,A=60°,求a、b的值;
(2)若a=ccosB,且b=csinA,试判断△ABC的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”. (I) 已知二次函数f(x)=ax2+2bx﹣3a(a,b∈R),试判断f(x)是否为“局部奇函数”?并说明理由;
(II) 设f(x)=2x+m﹣1是定义在[﹣1,2]上的“局部奇函数”,求实数m的取值范围;
(III) 设f(x)=4x﹣m2x+1+m2﹣3,若f(x)不是定义域R上的“局部奇函数”,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣4x﹣14y+45=0及点Q(﹣2,3).
(1)若M为圆C上任一点,求|MQ|的最大值和最小值;
(2)若实数m,n满足m2+n2﹣4m﹣14n+45=0,求k= 的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】东莞某家具生产厂家根据市场调查分析,决定调整新产品生产方案,准备每周(按40个工时计算)生产书桌、书柜、电脑椅共120张,且书桌至少生产20张.已知生产这些家具每张所需工时和每张产值如表:
家具名称 | 书桌 | 书柜 | 电脑椅 |
工 时 | |||
产值(千元) | 4 | 3 | 2 |
问每周应生产书桌、书柜、电脑椅各多少张,才能使产值最高?最高产值是多少?(以千元为单位)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com