精英家教网 > 高中数学 > 题目详情

【题目】某县城出租车的收费标准是:起步价是元(乘车不超过千米);行驶千米后,每千米车费1.2元;行驶千米后,每千米车费1.8元.

(1)写出车费与路程的关系式;

(2)一顾客计划行程千米,为了省钱,他设计了三种乘车方案:

①不换车:乘一辆出租车行千米

②分两段乘车:先乘一辆车行千米,换乘另一辆车再行千米;

③分三段乘车:每乘千米换一次车.

问哪一种方案最省钱.

【答案】12)方案③最省钱

【解析】试题分析:(1)车费f(x)与路程x的关系式为f(x)=

(2)30公里不换车的车费为1.8×30﹣4.6=49.4(元);分别计算方案:行驶两个15公里的车费为

(1.8×15﹣4.6)×2;方案:行三个10公里的车费为(1.2×10+1.4)×3,半径即可得出.
试题解析:

1)解:设出租车行驶千米的车费为元,则

(2)解:方案①30千米不换车的车费为

(元)

方案②:行驶两个15千米的车费为:

(元);

方案③:行三个10千米的车费为:

(元)

所以方案③最省钱.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】社会公众人物的言行一定程度上影响着年轻人的人生观、价值观.某媒体机构为了解大学生对影视、歌星以及著名主持人方面的新闻(简称:“星闻”)的关注情况,随机调查了某大学的位大学生,得到信息如下表:

(Ⅰ)从所抽取的人内关注“星闻”的大学生中,再抽取三人做进一步调查,求这三人性别不全相同的概率;

(Ⅱ)是否有以上的把握认为“关注‘星闻’与性别有关”,并说明理由;

(Ⅲ)把以上的频率视为概率,若从该大学随机抽取位男大学生,设这人中关注“星闻”的人数为,求的分布列及数学期望.

附: .

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取500测量这些产品的一项质量指标值由测量结果得如下频率分布直方图:

(1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该组区间的中点值作代表)

(2)由直方图可以认为这种产品的质量指标值Z服从正态分布N(μσ2)其中μ近似为样本平均数σ2近似为样本方差s2.

()利用该正态分布P(187.8<Z<212.2)

()某用户从该企业购买了100件这种产品X表示这100件产品中质量指标值位于区间(187.8212.2)的产品件数.利用()的结果,求E(X).

附: 12.2.ZN(μσ2)P(μσ<Z<μσ)0.682 6P(μ2σ<Z<μ2σ)0.954 4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若曲线上点处的切线过点,求函数的单调减区间;

(Ⅱ)若函数上无零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,且 .

1求函数的解析式;

2)判断并证明函数上的单调性;

3)令,若对任意的都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届云南省云南师范大学附属中学高三高考适应性月考(五)文数】已知函数.

(1)若曲线在点处的切线斜率为1,求函数的单调区间;

(2)若时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8.

有时可用函数

描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(),表示对该学科知识的掌握程度,正实数a与学科知识有关.

1) 证明:当时,掌握程度的增加量总是下降;

2) 根据经验,学科甲、乙、丙对应的a的取值区间分别为,,

.当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆ab>0的离心率,过点的直线与原点的距离为

1求椭圆的方程

2已知定点,若直线与椭圆交于CD两点是否存在k的值,使以CD为直径的圆过E点?请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·重庆高二检测)如图三棱柱ABC-A1B1C1侧棱垂直底面ACB=90°AC=BC=AA1D是棱AA1的中点.

(1)证明平面BDC1⊥平面BDC.

(2)平面BDC1分此棱柱为两部分求这两部分体积的比.

查看答案和解析>>

同步练习册答案