精英家教网 > 高中数学 > 题目详情
6.两个球的半径之比为1:3,那么这两个球的表面积之比为(  )
A.1:9B.1:27C.1:3D.1:3$\sqrt{3}$

分析 利用球的表面积公式,直接求解即可.

解答 解:两个球的半径之比为1:3,又两个球的表面积等于两个球的半径之比的平方,(球的面积公式为:4πr2
则这两个球的表面积之比为1:9.
故选:A.

点评 本题考查球的表面积,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如果一个数的2倍减去1等于5,则这个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x∈[0,π),则sinx<$\frac{\sqrt{2}}{2}$的x取值范围为[0,$\frac{π}{4}$)∪($\frac{3π}{4}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{bn}中,b1=4,且bn+1-2bn-4=0,则b8=(  )
A.28-4B.210-4C.212-4D.29-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A(2,-2,1),B(1,0,1),C(3,-1,4),则向量$\overrightarrow{AB}与\overrightarrow{AC}$夹角的余弦值为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{55}}{55}$C.$\frac{\sqrt{11}}{11}$D.$\frac{\sqrt{55}}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某班有男生33人,女生11人,现按照分层抽样的方法建立一个4人的课外兴趣小组.
(Ⅰ)求课外兴趣小组中男、女同学的人数;
(Ⅱ)老师决定从这个课外兴趣小组中选出2名同学做某项实验,选取方法是先从小组里选出1名同学,该同学做完实验后,再从小组里剩下的同学中选出1名同学做实验,求选出的2名同学中有女同学的概率;
(Ⅲ)老师要求每位同学重复5次实验,实验结束后,第一位同学得到的实验数据为68,70,71,72,74,第二位同学得到的实验数据为69,70,70,72,74,请问哪位同学的实验更稳定?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等差数列{an}中,已知a1>0,前n项和为Sn,且有S3=S11,则$\frac{a_1}{d}$=$-\frac{13}{2}$,当Sn取得最大值时,n=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$在某一个周期内的最低点和最高点坐标为$(-\frac{π}{12},-2),(\frac{5π}{12},2)$,则该函数的解析式为(  )
A.$f(x)=2sin(2x+\frac{π}{3})$B.$f(x)=2sin(2x-\frac{π}{3})$C.$f(x)=2sin(2x+\frac{π}{6})$D.$f(x)=2sin(2x-\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图1,矩形ABCD,AB=2BC=4,M,N,E分别为AD,BC,CD的中点.现将△ADE沿AE折起,折起过程中,点D仍记作D,得到如图2所示的四棱锥D-ABCE.
(1)证明:MN∥平面CDE;
(2)当AD⊥BE时,求直线BD与平面CDE所成角的正弦值.

查看答案和解析>>

同步练习册答案